Primordial black holes in the early Univese, quantum-gravitational corrections and inflationary cosmology
https://doi.org/10.29235/1561-2430-2024-60-3-225-232
Abstract
In essence, primordial black holes generated in the early Universe as a result of a gravitational collapse of the high-density matter are detectors of the processes proceeding in it. As these black holes are generated at high energies (close to the Planck energies) and their radii are small, there is a need to take into consideration the quantum-gravitational corrections for them. In this paper, within the scope of the Generalized Uncertainty Principle, the author continues a study of the quantum-gravitational corrections and their contributions into the inflationary parameters for primordial black holes in the pre-inflationary epoch. Specifically, within this pattern, the author considers a case of Hawking’s radiation (evaporation) for the above-mentioned black holes and derives formulae for the corresponding changes (”shifts”) of the basic inflation parameters. In all cases the expressions for the corresponding correction of е-foldings in an inflation model have been found. In conclusion the main problems for further studies are formulated.
About the Author
A. E. Shalyt-MargolinBelarus
Alexander E. Shalyt-Margolin – Dr. Sc. (Physics and Mathematics), Chief Researcher
11, Bobruiskaya Str., 220006, Minsk
References
1. Zel’dovich Y. B., Novikov I. D. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Astronomicheskii zhurnal = Soviet Astronomy, 1967, vol. 10, no. 4, pp. 602–603.
2. Hawking S. Gravitationally Collapsed Objects of Very Low Mass. Monthly Notices of the Royal Astronomical Society, 1971, vol. 152, no. 1, pp. 75–78. https://doi.org/10.1093/mnras/152.1.75
3. Carr B. J., Hawking S. W. Black Holes in the Early Universe. Monthly Notices of the Royal Astronomical Society, 1974, vol. 168, no. 2, pp. 399–415. https://doi.org/10.1093/mnras/168.2.399
4. Green A. M., Kavanagh B. J. Primordial Black Holes as a dark matter candidate. Journal of Physics G: Nuclear and Particle Physics, 2021, vol. 48, no. 4, art. ID 043001 (29 p). https://doi.org/10.1088/1361-6471/abc534
5. Carr B. J. The Primordial black hole mass spectrum. Astrophysical Journal, 1975, vol. 201, pt. 1, pp. 1–19. https://doi.org/10.1086/153853
6. Carr B. J. Primordial Black Holes as a Probe of Cosmology and High Energy Physics. Lecture Notes in Physics, 2003, vol. 631, pp. 301–321. https://doi.org/10.1007/978-3-540-45230-0_7
7. Carr B. J. Primordial black holes – recent developments. 22nd Texas Symposium, Stanford, 12–17 December 2004. Arxiv [Preprint], 2005. Available at: arXiv:astro-ph/0504034. https://doi.org/10.48550/arXiv.astro-ph/0504034
8. Prokopec T., Reska P. Scalar cosmological perturbations from inflationary black holes. Journal of Cosmology and Astroparticle Physics, 2011, vol. 2011, pp. 050. https://doi.org/10.1088/1475-7516/2011/03/050
9. Kiefer C. Quantum Gravity. 3rd ed. United Kingdom, Oxford University Press, 2012. 406 p. https://doi.org/10.1093/acprof:oso/9780199585205.001.0001
10. Shalyt-Margolin A. E. Some aspects of primary black holes in the early Universe and inflationary cosmology. Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika = Journal of the Belarusian State University. Physics, 2023, no. 2, pp. 74–81 (in Russian).
11. Padmanabhan T. Gravitation: Foundations and Frontiers. New York, USA, Cambridge University Press, 2010. 730 p. https://doi.org/10.1017/cbo9780511807787
12. Nariai H. On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case. General Relativity and Gravitation, 1999, vol. 31, pp. 951–961. https://doi.org/10.1023/a:1026698508110
13. Nariai H. On a new cosmological solution of Einstein’s field equations of gravitation. General Relativity and Gravitation, 1999, vol. 31, pp. 963–971. https://doi.org/10.1023/a:1026602724948
14. Casadio R., Giugno A., Giusti A., Lenzi M. Quantum formation of primordial black holes. General Relativity and Gravitation. 2019, vol. 51, art. ID 103 (10 p.). https://doi.org/10.1007/s10714-019-2587-1
15. Gorbunov D., Rubakov V. Introduction to the Theory of the Early Universe, Cosmological Perturbations and Inflationary Theory. Singapore, World Scientific Publ. Pte. Ltd, 2011. 504 p. https://doi.org/10.1142/9789814322232
16. Nouicer K. Quantum-corrected black hole thermodynamics to all orders in the Planck length. Physics Letters B, 2007, vol. 646, no. 2–3, pp. 63–71. https://doi.org/10.1016/j.physletb.2006.12.072
17. Amati D., Ciafaloni M., Veneziano G. Can spacetime be probed below the string size? Physics Letters B, 1989, vol. 216, no. 1–2, pp. 41–47. https://doi.org/10.1016/0370-2693(89)91366-x
18. Capozziello S., Lambiase G., Scarpetta G. The Generalized Uncertainty Principle from Quantum Geometry. International Journal of Theoretical Physics, 2000, vol. 39, pp. 15–22. https://doi.org/10.1023/a:1003634814685
19. Adler R. J., Santiago D. I. On gravity and the uncertainty principle. Modern Physics Letters A, 1999, vol. 14, no. 20, pp. 1371–1378. https://doi.org/10.1142/s0217732399001462
20. Maggiore M. Black hole complementarity and the physical origin of the stretched horizon. Physical Review D, 1994, vol. 49, no. 16, pp. 2918–2921. https://doi.org/10.1103/physrevd.49.2918
21. Maggiore M. A generalized uncertainty principle in quantum gravity. Physics Letters B, 1993, vol. 304, no. 1–2, pp. 65–69. https://doi.org/10.1016/0370-2693(93)91401-8
22. Tawfik A., Diab A. Generalized uncertainty principle: Approaches and applications. International Journal of Modern Physics D, 2014, vol. 23, № 12, art. ID 1430025. https://doi.org/10.1142/s0218271814300250
23. Adler R. J., Chen Pisin, Santiago D. I. The Generalized Uncertainty Principle and Black Hole Remnants. General Relativity and Gravitation, 2001, vol. 33, pp. 2101–2108. https://doi.org/10.1023/a:1015281430411
24. Corless R. M., Gonnet G. H., Hare D. E. G., Jerey D. J., Knuth D. E. On the Lambert W function. Advances in Computational Mathematics, 1996, vol. 5, pp. 329–360. https://doi.org/10.1007/bf02124750
25. Faddeev L. D. Mathematical View on Evolution of Physics. Priroda [Nature], 1989, no. 5, pp. 11–16 (in Russian).
26. Shalyt-Margolin A. E., Suarez J. G. Quantum mechanics at Planck scale and density matrix. Int. International Journal of Modern Physics D, 2003, vol. 12, no. 07, pp. 1265–1278. https://doi.org/10.1142/s0218271803003700
27. Shalyt-Margolin A. E., Tregubovich A. Ya. Deformed density matrix and generalized uncertainty relation in thermodynamics. Modern Physics Letters A, 2004, vol. 19, no. 01, pp. 71–81. https://doi.org/10.1142/s0217732304012812
28. Shalyt-Margolin A. E., Suarez J. G. Deformation of Density Matrix at The Early Universe and Bekenstein-Hawking Formula. Nonlinear Phenomena in Complex Systems. An Interdisciplinary Journal, 2004, vol. 7, no. 2, pp. 129–139.
29. Shalyt-Margolin A. E., Strazhev V. I. Vacuum Energy and Small Parameter at Planck Scale. Nonlinear Phenomena in Complex Systems An Interdisciplinary Journal, 2009, vol. 12, no. 1, pp. 102–105.
30. Bekenstein J. D. Black Holes and Entropy. Physical Review D, 1973, vol. 7, no. 8, pp. 2333–2346. https://doi.org/10.1103/physrevd.7.2333
31. Bekenstein J. D. Black holes and the second law. Lettere Al Nuovo Cimento, 1972, vol. 4, pp. 737–740. https://doi.org/10.1007/bf02757029
32. Frolov V. P., Novikov I. D. Black Hole Physics: Basic Concepts and New Developments. Dordrecht, Kluwer Academic, 1997. 787 p.
33. Brizuela D., Kiefer C., Kramer M., Robles-Pérez S. Quantum-gravity effects for excited states of inflationary perturbations and Salvador Robles-Perez. Physical Review D, 2019, vol. 99, no. 10, art. ID 104007. https://doi.org/10.1103/physrevd.99.104007
34. Kopinski Ja., Valiente Kroon Ju. A. Bach equation and the matching of spacetimes in conformal cyclic cosmology models. Physical Review D, 2022, vol. 106, no. 8, art. ID 084039. https://doi.org/10.1103/physrevd.106.084034