Influence of annealing on optical, morphological and electrophysical properties of granular silver nanostructures
https://doi.org/10.29235/1561-2430-2024-60-3-242-251
Abstract
The optical, morphological and electrophysical properties of silver nanostructures fabricated by electron beam evaporation and annealed at temperatures of 145 and 195 °C were studied. All samples are characterized by the presence of a pronounced surface plasmon absorption resonance band in the visible range and represent close-packed monolayers of nanoparticles, the average sizes of which increase from ~10 nm in the original samples to ~35–40 nm and ~45–60 nm in the annealed ones, depending on the annealing temperature. The influence of various factors on the spectral characteristics of samples, including the size of nanoparticles and electrodynamic interactions between nanoparticles, is discussed. It has been shown that all granular nanostructures studied, both initial and annealed, are highly resistive. It has been established that for the initial and annealed at 145 °C samples, near low values of the applied voltage, a dependence of the current on the irradiation wavelength can be traced, with its value changing up to two orders of magnitude for certain wavelengths.
Keywords
About the Authors
A. D. ZamkovetsBelarus
Anatoly D. Zamkovets – Dr. Sc. (Physics and Mathematics), Leading Researcher of the Center “Photonics of Atomic and Molecular Structures”
68-2, Nezavisimosti Ave., 220072, Minsk
S A. Tikhomirov
Belarus
Sergey A. Tikhomirov – Corresponding Member of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Scientific Head of the Center “Photonics of Atomic and Molecular Structures”
68-2, Nezavisimosti Ave., 220072, Minsk
L. V. Baran
Belarus
Ludmila V. Baran – Ph. D. (Physics and Mathematics), Head of Department for Scientific Researches Service, Department of Physics of Solid States
4, Nezavisimosti Ave., 220030, Minsk
H. S. Kuzmitskaya
Belarus
Hanna S. Kuzmitskaya – Researcher at the Photoelectronics Laboratory
68-1, Nezavisimosti Ave., 220072, Minsk
V. V. Malyutina-Bronskaya
Belarus
Victoriya V. Malyutina-Bronskaya – Head of the Photoelectronics Laboratory
68-1, Nezavisimosti Ave., 220072, Minsk
I. Y. Frolov
Belarus
Igor Y. Frolov – Leading Engineer-Technologist of the Photoelectronics Laboratory
68-1, Nezavisimosti Ave., 220072, Minsk
P. V. Duong
Viet Nam
Pham Van Duong – Ph. D. (Physics and Mathematics), Leading Scientific Worker of Center for Quantum electronics
10 Dao Tan Str., Cong Vi, Da Dinh, Нanoi
P. H. Minh
Viet Nam
Pham Hong Minh – Ph. D. (Physics and Mathematics), Head of Laboratory, Vice Director of Center for Quantum electronics
10 Dao Tan Str., Cong Vi, Da Dinh, Нanoi
References
1. Gusev A. I. Nanomaterials, Nanostructures, Nanotechnology. Moscow, Fizmatlit Publ., 2005. 416 p. (in Russian).
2. Kreibig U., Volmer М. Optical Properties of Metal Clusters. Berlin, Springer, 1995. 533 p. https://doi.org/10.1007/978- 3-662-09109-8
3. Maier S. A. Plasmonics: Fundamentals and Applications. New York, Springer, 2007. 224 p. https://doi.org/10.1007/0- 387-37825-1
4. Klimov V. V. Nanoplasmonics. Moscow, Fizmatlit Publ., 2009. 480 p. (in Russian). 5. Morris J. E. Resistance changes of discontinuous gold films in air. Thin Solid Films, 1970, vol. 5, no. 5–6, pp. 339–353. https://doi.org/10.1016/0040-6090(70)90106-9
5. Thurstans R. E., Oxley D. P. The electroformed metal-insulator-metal structure: a comprehensive model. Journal of Physics D: Applied Physics, 2002, vol. 35, no. 8, pp. 802–809. 10.1088/0022-3727/35/8/312
6. Lith J., Lassesson A, Brown S. A., Schulze M., Partridge J. G., Ayesh A. A hydrogen sensor based on tunneling between palladium clusters. Applied Physics Letters, 2007, vol. 91, no. 18, art. ID 181910 (3 p.). https://doi.org/10.1063/1.2802730
7. Dieringer J. A., McFarland A. D., Shah N. C., Stuart D. A., Whitney A. V., Yonzon C. R., Young M. A., Zhang X., Van Duyne R. P. Introductory Lecture: Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss, 2006, vol. 132, pp. 9–26. https://doi.org/10.1039/b513431p
8. Stuart H. R., Hall D. G. Island size effects in nanoparticle-enhanced photodetectors. Applied Physics Letters, 1998, vol. 73, no. 26, pp. 3815–3817. https://doi.org/10.1063/1.122903
9. Atwater H. A., Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, vol. 9, pp. 205–213. https://doi.org/10.1038/nmat2629
10. Chopra K. L. Thin Film Phenomena. McGraw-Hill, 1969. 844 p.
11. Neugebauer C. A., Web M. N. Electrical conduction mechanism in ultrathin evaporated metal films. Journal of Applied Physics, 1962, vol. 33, no. 1, pp. 74–82. https://doi.org/10.1063/1.1728531
12. Wei H., Eilers H. From silver nanoparticles to thin films: Evolution of microstructure and electrical conduction on glass substrates. Journal of Physics and Chemistry of Solids, 2009, vol. 70, no. 2, pp. 459–465. https://doi.org/10.1016/j.jpcs.2008.11.012
13. Sieradzki K., Bailey K., Alford T. L. Agglomeration and percolation conductivity. Applied Physics Letters, 2001, vol. 79, no. 21, pp. 3401–3403. https://doi.org/10.1063/1.1419043
14. Quinten M., Leitner А., Krenn J. R., Aussenegg F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Optics Letters, 1998, vol. 23, no. 17, pp. 1331–1333. https://doi.org/10.1364/ol.23.001331
15. Araki H., Hanawa T. The temperature dependence of electron emission from a discontinuous carbon film device between silver film electrodes. Thin Solid Films, 1988, vol. 158, no. 2, pp. 207–216. https://doi.org/10.1016/0040-6090(88)90022-3
16. Xu N. S., Huq S. Ejaz. Novel cold cathode materials and applications. Materials Science and Engineering: R: Reports, 2005, vol. 48, no. 2–3, pp. 47–189. https://doi.org/10.1016/j.mser.2004.12.001
17. Fedorovich R. D., Naumovets A. G., Tomchuk P. M. Electronic phenomena in nanodispersed thin films. Journal of Physics: Condensed Matter, 1999, vol. 11, no. 49, pp. 9955–9967. https://doi.org/10.1088/0953-8984/11/49/313
18. Mironov V. L. Fundamentals of Scanning Probe Microscopy. Moscow, Tekhnosfera Publ., 2004. 144 p. (in Russian).
19. Zalessky V. B., Malyutina-Bronskaya V. V., Soroka S. A., Ermakov O. V., Grebenshchikov O. A., Leonova T. R. Automated basic laser testing complex for testing promising types of semiconductor photodetectors. Priborostroenie-2020: materialy 13-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Instrumentation-2020: materials of the 13th International Scientific and Technical Conference]. Minsk, 2020, pp. 391–392 (in Russian).
20. Westphalen M., Kreibig U., Rostalski J., Lüth H., Meissner D. Metal cluster enhanced organic solar cells. Solar Energy Materials and Solar Cells, 2000, vol. 61, no. 1, pp. 97–105. https://doi.org/10.1016/s0927-0248(99)00100-2
21. Bohren C., Huffman D. Absorption and Scattering of Light by Small Particles. New York, Wiley, 1983. 530 p. https://doi.org/10.1002/9783527618156
22. Zamkovets A. D., Kachan S. M., Ponyavina A. N. High sensory potential of self-organizing metal nanostructures. Sensorna elektronіka і mіkrosistemnі tekhnologії = Sensor Electronics and Microsystem Technologies, 2008, no. 4, pp. 74–79 (in Russian).
23. Kachan S. M., Ponyavina A. N. Optical diagnostics of 2D self-assembled silver nanoparticles arrays. Physics, Chemistry and Application of Nanostructures, 2007, pp. 165–168. https://doi.org/10.1142/9789812770950_0036
24. Suresh S. Synthesis, Structural, Surface Morphology, Optical and Electrical Properties of Silver Oxide Nanoparticles. International Journal of Nanoelectronics and Materials, 2016, vol. 9, pp. 37–49.
25. Jasima F. A., Mosa Z. S. A., Habubi N. F., Kadhim Y. H., Chiad S. S. Characterization of silver oxide thin films with thickness variation prepared by thermal evaporation method. Digest Journal of Nanomaterials and Biostructures, 2023, vol. 18, no. 13, pp. 1039–1049. https://doi.org/10.15251/djnb.2023.183.1039
26. Gladskikh I. A., Leonov N. B., Przhibel’sky S. G., Vartanyan T. A. The optical and electrical properties and resistance switching of granular films of silver on sapphire. Journal of Optical Technology, 2014, vol. 81, no. 5, pp. 280–284. https://doi.org/10.1364/jot.81.000280
27. Vashchenko E. V., Vartanyan T. A., Hubenthal F. Photoconductivity of silver nanoparticle ensembles on quartz glass (SiO2) supports assisted by localized surface plasmon excitations. Plasmonics, 2013, vol. 8, pp. 1265–1271. https://doi.org/10.1007/s11468-013-9544-8
28. Darevsky A. S., Zhdan A. G., Nemenushchiy V. N. Description of the transport mechanism in island films of metals within the framework of the concepts of percolation theory. Dispersed Metal Films. Kyiv, Publishing House of the Academy of Sciences of the Ukrainian SSR, 1976, pp. 155–163 (in Russian).
29. Mott N., Davis E. Electronic Processes in Noncrystalline Materials. London, Oxford University Press, 1971. xiii + 437 p.
30. Vashchenko E. V., Gladskikh I. A., Przhibel’sky S. G., Khromov V. V., Vartanyan T. A. Conductivity and photoconductivity of granular silver film on a sapphire substrate. Journal of Optical Technology, 2013, vol. 80, no. 5, pp. 263–268. https://doi.org/10.1364/jot.80.000263