ski S. V. Influence of gamma irradiation on the reverse current-voltage characteristics of silicon photomultipliers
https://doi.org/10.29235/1561-2430-2024-60-3-252-262
Abstract
The study investigated the effect of Co60 gamma-quanta on the reverse current-voltage characteristic (IV) of silicon photomultiplier (SiPMs) with 1004 cells, which themselves were optically isolated from each other n+ –p–p+ -structures. The cells were optically isolated from each other by trenches filled with tungsten after passivation of the walls with SiO2 and Si3N4 layers. Two variants of structural design of SiPMs were studied. Two variants were tested for the trench metal connection in the SiPMs: variant BI connected the trench metal to the n+-region of the cell through a quenching polysilicon resistor, while variant BII connected it to the p+-region. The breakdown voltage of the investigated SiPMs was Ubr = 34 ± 1.0 V. The samples were irradiated in both the active electrical mode (avalanche breakdown mode) and the passive mode (reverse bias Ub = 0 V). It was discovered, that at dose of D = 106 rad, the dark current for SiPM (BI) and (BII) increased by 6–7 times when irradiated in passive mode and by 15–16 times for SiPM (BII) when irradiated in active mode. For SiPM (BI) irradiated in the avalanche breakdown mode, the dark current increased by 104 times at D = 105 rad. The research demonstrates that the radiation-induced degradation of the dark current in the SiPMs under study is due to an increase in the generation and, primarily, surface components. This is a result of the accumulation of positive charge in the insulating layer of the separating trenches.
Keywords
About the Authors
D. A. AharodnikauBelarus
Dzmitryi A. Aharodnikau – Researcher
19, P. Brovka Str., 220072, Minsk
S. B. Lastovskii
Belarus
Stanislav B. Lastovskii – Ph. D. (Physics and Mathematics), Leading Researcher
19, P. Brovka Str., 220072, Minsk
Yu. V. Bogatyrev
Belarus
Yuri V. Bogatyrev – Dr. Sc. (Engineering), Chief Researcher
19, P. Brovka Str., 220072, Minsk
A. M. Lemeshevskaya
Belarus
Alla M. Lemeshevskaya – Department Deputy Manager, Affiliate R&D Center “Belmicrosystems”
121A, Kazinets Str., 220108, Minsk
U. S. Tsymbal
Belarus
Uladzimir S. Tsymbal – Chief Designer of Concept, Affiliate R&D Center “Belmicrosystems”
121А, Kazinets Str., 220108, Minsk
S. V. Shpakovski
Belarus
Sergey V. Shpakovski – Head of the Department “Т”, Affiliate R&D Center “Belmicrosystems”
121А, Kazinets Str., 220108, Minsk
References
1. Gulakov I. R., Zenevich A. O. Photodetectors of Quantum Systems. Minsk, Higher State College of Communications, 2012. 48 p. (in Russian).
2. Dinu N. Silicon photomultipliers (SiPM). Photodetectors: Materials, Devices and Applications. Elsevier, 2016, pp. 255–294. https://doi.org/10.1016/b978-1-78242-445-1.00008-7
3. Buzhan P., Dolgoshein B., Filatov L., Ilyin A., Kantzerov V., Kaplin V., Karakash A., Kayumov F., Klemin S., Popova E., Smirnov S. Silicon photomultiplier and its possible applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, vol. 504, no. 1–3, pp. 48–52. https://doi.org/10.1016/s0168-9002(03)00749-6
4. Lecoq P., Gundacker S. SiPM applications in positron emission tomography: toward ultimate PET time-of-flight resolution. The European Physical Journal Plus, 2021, vol. 136, no. 3, art. ID 292. https://doi.org/10.1140/epjp/s13360-021-01183-8
5. Gordon K. J., Fernandez V., Townsend P. D., Buller G. S. A short wavelength GigaHertz clocked fiber-optic quantum key distribution system. IEEE Journal of Quantum Electronics, 2004, vol. 40, no. 7, pp. 900–908. https://doi.org/10.1109/jqe.2004.830182
6. Agishev R., Comerón A., Bach J., Rodriguez A., Sicard M., Riu J., Royo S. Lidar with SiPM: Some capabilities and limitations in real environment. Optics & Laser Technology, 2013, vol. 49, pp. 86–90. https://doi.org/10.1016/j.optlastec.2012.12.024
7. Caccia M., Nardo L., Santoro R., Schaffhauser D. Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, vol. 926, pp. 101–117. https://doi.org/10.1016/j.nima.2018.10.204
8. Hampel M. R., Fuster A., Varela C., Platino M., Almela A., Lucero A., Wundheiler B., Etchegoyen A. Optical crosstalk in SiPMs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, vol. 976, art. ID 164262. https://doi.org/10.1016/j.nima.2020.164262
9. Popova Е., Buzhan P., Dolgoshein B., Ilyin A., Карlin V., Klemin S., Mirzoyan R., Teshima M. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, vol. 610, no. 1, pp. 131–134. http://doi.org/10.1016%2Fj.nima.2009.05.150
10. Rech I., Ingargiola A., Spinelli R., Labanca I., Marangoni S., Ghioni M., Cova S. Optical crosstalk in single photon avalanche diode arrays: a new complete model. Optics Express, 2008, vol. 16, no. 12, pp. 8381–8394. https://doi.org/10.1364/oe.16.008381
11. Grekhov I. V., Serezhkin Yu. N. Avalanche breakdown of p-n junction in semiconductors. Leningrad, Energiya Publ., 1980. 152 p. (in Russian).
12. Mirzoyan R., Kosyra R., Moser H. G. Light emission in Si avalanches. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, vol. 610, no. 1, pp. 98–100. https://doi.org/10.1016/j.nima.2009.05.081
13. Lacaita A. L., Zappa F., Bigliardi S., Manfredi M. On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices. IEEE Transactions on Electron Devices, 1993, vol. 40, no. 3, pp. 577–582. https://doi.org/10.1109/16.199363
14. Zhang C., Zhang G., Cao X., Zhang C., Li L. Optical crosstalk photon penetration depth in Silicon Photomultipliers. Optik, 2021, vol. 239, pp. 166864. https://doi.org/10.1016/j.ijleo.2021.166864
15. Kindt W. J., Zeijl H. W. van, Middelhoek S. Optical Cross Talk in Geiger Mode Avalanche Photodiode Arrays: Modeling, Prevention and Measurement. 28th European Solid-State Device Research Conference. Bordeaux, France, 1998, pp. 192–195.
16. Soroka S. A., Zalesskii V. B., Malyutina-Bronskaya V. V, Lemeshevskaya A. M., Solodukha V. V. Silicon photodetectors with internal amplification of a wide range of applications. Priborostroenie-2020: materialy 13-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 18–20 noyabrya 2020 goda, Minsk, Respublika Belarus’ [Proceedings of the 13th International Scientific and Technical Conference, November 18–20, 2020, Minsk, Republic of Belarus]. Minsk, 2020, pp. 393–394 (in Russian).
17. Aharodnikau D. A. Simulation of charge accumulation in silicon photomultipliers under the influence of soft X-rays. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2022, vol. 58, no. 3, pp. 337–343 (in Russian). https://doi.org/10.29235/1561-2430-2022-58-3-337-343
18. Garutti E. Characterization and X-Ray damage of Silicon Photomultipliers. Proceedings of Technology and Instrumentation in Particle Physics 2014 – PoS(TIPP2014). Amsterdam, 2014. https://doi.org/10.22323/1.213.0070
19. Garutti E., Musienko Yu. Radiation damage of SiPMs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, vol. 926, pp. 69–84. https://doi.org/10.1016/j.nima.2018.10.191
20. Pagano R., Lombardo S., Palumbo F., Sanfilippo D., Valvo G., Fallica G., Libertino S. Radiation hardness of silicon photomultipliers under 60Co γ-ray irradiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, vol. 767, pp. 347–352. https://doi.org/10.1016/j.nima.2014.08.028
21. Nakamura I. Radiation damage of pixilated photon detector by neutron irradiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, vol. 610, no. 1, pp. 110–113. https://doi.org/10.1016/j.nima.2009.05.086
22. Engelmann Е. Dark Count Rate of Silicon Photomultipliers. Cuvillier, 2018. 194 р.
23. Sze S. M., Lee M.-K. Semiconductor Devices: Physics and Technology. John Wiley & Sons Singapore Pte. Limited, 2012. 582 p.
24. Korshunov F. P., Gatal’skii G. V., Ivanov G. M. Radiation Effects in Semiconductor Devices. Minsk, Nauka i tekhnika Publ., 1978. 232 p. (in Russian).
25. Tapero K. I., Ulimov V. N., Chlenov A. M. Radiation Effects in Silicon Integrated Circuits for Space Applications. Moscow, BINOM Publ., 2012. 304 p. (in Russian).
26. Blicher A. Field-Effect and Bipolar Power Transistor Physics. Academic Press, 1981. 312 p.
27. Grove A. S. Physics and Technology of Semiconductor Devices. Wiley, 1967. 366 p.
28. Nikiforov A. Yu., Telets V. A., Chumakov A. I. Radiation Effects in CMOS IC. Moscow, Radio i svyaz’ Publ., 1994. 164 p. (in Russian).
29. Rosado L. Electrónica Física y Microelectrónica. Madrid, Paraninfo, 1987. 501 p. (in Spanish).
30. Pershenkov V. S., Popov V. D., Shal’nov A. V. Surface Radiation Effects in Integrated Circuit Elements. Moscow, Energoatomizdat Publ., 1988. 256 p. (in Russian).