Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

To the questions of Shemetkov and Agrawal about the generalizations of the hypercenter of finite groups

https://doi.org/10.29235/1561-2430-2024-60-4-271-279

Abstract

A formation F is called a Baer – Shemetkov formation in a class X of groups if in any finite X-group the intersection of all F-maximal subgroups coincides with the F-hypercenter. It is proved that for a non-empty hereditary saturated formation F there exists the greatest by inclusion hereditary saturated formation BSF such that F is a Baer – Shemetkov formation in BSF. The connection of this result with the solution of Agrawal’s (1976) and Shemetkov’s (1995) questions is discussed. For the class U of all supersolvable groups the class BSU is described and the algorithm for its recognition is presented.

About the Author

V. I. Murashka
Francisk Skorina Gomel State University
Belarus

Viachaslau I. Murashka – Ph. D. (Physics and Ma thematics), Associate Professor, Associate Professor of the Department of Algebra and Geometry, Leading Researcher of Research Sector

104, Sovetskaya Str., 246028, Gomel



References

1. Baer R. Supersolvable Immersion. Canadian Journal of Mathematics, 1959, vol. 11, pp. 353–369. https://doi.org/10.4153/cjm-1959-036-2

2. Huppert B. Zur Theorie der Formationen. Archiv der Mathematik, 1969, vol. 19, no. 6, pp. 561–574. https://doi.org/10.1007/BF01899382

3. Šemetkov L. A. Graduated formations of groups. Mathematics of the USSR-Sbornik, 1974, vol. 23, no. 4, pp. 593–611. https://doi.org/10.1070/sm1974v023n04abeh002184

4. Shemetkov L. A., Skiba A. N. Formations of Algebraic Systems. Moscow, Nauka Publ., 1989. 256 p. (in Russian).

5. Hall P. On the System Normalizers of a Solvable Group. Proceedings of the London Mathematical Society, 1938, vol. 43, no. 1, pp. 507–528. https://doi.org/10.1112/plms/s2-43.6.507

6. Baer R. Group elements of prime power index. Transactions of the American Mathematical Society, 1953, vol. 75, pp. 20–47. https://doi.org/10.1090/s0002-9947-1953-0055340-0

7. Skiba A. N. On the F-hypercentre and the intersection of all F-maximal subgroups of a finite group. Journal of Pure and Applied Algebra, 2012, vol. 216, no. 4, pp. 789–799. https://doi.org/10.1016/j.jpaa.2011.10.006

8. Murashka V. I. On the F-hypercenter and the intersection of F-maximal subgroups of a finite group. Journal of Group Theory, 2018, vol. 21, no. 3, pp. 463–473. https://doi.org/10.1515/jgth-2017-0043

9. Murashka V. I. On Shemetkov’s Question about the F-Hypercenter. Mathematical Notes, 2024, vol. 115, no. 5, pp. 779–788. https://doi.org/10.1134/s0001434624050134

10. Beidleman J. C., Heineken H. A note of intersection of maximal F-subgroups. Journal of Algebra, 2010, vol. 333, no. 1, pp. 120–127. https://doi.org/10.1016/j.jalgebra.2010.10.017

11. Mazurov V., Khukhro E. I. (eds.). Unsolved Problems in Group Theory. The Kourovka Notebook, no. 20. Novosibirsk, 2022. Available at: https://arxiv.org/pdf/1401.0300 (accessed at 16 August 2024).

12. Vasil’ev A. F., Murashka V. I. Arithmetic graphs and classes of finite groups. Siberian Mathematical Journal, 2019, vol. 60, no. 1, pp. 41–55. https://doi.org/10.1134/s0037446619010051

13. Agrawal R. K. Generalized Center and Hypercenter of a Finite Group. Proceedings of the American Mathematical Society, 1976, vol. 58, no. 1, pp. 13–21. https://doi.org/10.1090/S0002-9939-1976-0409651-8

14. Weinstein M. (ed.). Between Nilpotent and Solvable. Passaic, NJ, Polygonal Publishing House, 1982. 231 p.

15. Monakhov V. S. Finite groups with a given set of Schmidt subgroups. Mathematical Notes, 1995, vol. 58, no. 5, pp. 1183–1186. https://doi.org/10.1007/bf02305002

16. Vasil’ev A. F., Vasil’eva T. I., Tyutyanov V. N., On the finite groups of supersolvable type. Siberian Mathematical Journal, 2010, vol. 51, no. 6, pp. 1004–1012. https://doi.org/10.1007/s11202-010-0099-z

17. Monakhov V. S., Kniahina V. N. Finite groups with ℙ-subnormal subgroups. Ricerche di Matematica, 2013, vol. 62, pp. 307–322. https://doi.org/10.1007/s11587-013-0153-9

18. Seress Á. Permutation Group Algorithms. Cambridge University Press, 2003. 264 p. https://doi.org/10.1017/CBO9780511546549

19. Höfling B. Computing projectors, injectors, residuals and radicals of finite solvable groups. Journal of Symbolic Computation, 2001, vol. 32, no. 5, pp. 499–511. https://doi.org/10.1006/jsco.2001.0477

20. Eick B., Wright C. R. Computing subgroups by exhibition in finite solvable groups. Journal of Symbolic Computation, 2002, vol. 33, no. 2, pp. 129–143. https://doi.org/10.1006/jsco.2000.0503

21. Murashka V. I. Formations of finite groups in polynomial time: F-residuals and F-subnormality. Journal of Symbolic Computation, 2024, vol. 122, art. ID 102271. https://doi.org/10.1016/j.jsc.2023.102271

22. GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra. GAP. Available at: https:// www.gap-system.org (accessed at 16 August 2024).

23. Doerk K., Hawkes T. O. Finite Solvable Groups. De Gruyter Expositions in Mathematics, vol. 4. Berlin, New York, De Gruyter, 1992. 891 p. https://doi.org/10.1515/9783110870138

24. Eick B., Wright C. R. GAP package. FORMAT 1.4.4 Computing with formations of finite solvable groups. GAP. 2024. Available at: https://www.gap-system.org/Packages/format.html (accessed at 16 August 2024).

25. Guo W. Structure Theory for Canonical Classes of Finite Groups. Berlin, Heidelberg, Springer-Verlag, 2015. 359 p. https://doi.org/10.1007/978-3-662-45747-4

26. Kantor W. M. Sylow’s theorem in polynomial time. Journal of Computer and System Sciences, 1985, vol. 30, no. 3, pp. 359–394. https://doi.org/10.1016/0022-0000(85)90052-2

27. Babai L. On the length of subgroup chains in the symmetric group. Communications in Algebra, 1986, vol. 14, no. 9, pp. 1729–1736. https://doi.org/10.1080/00927878608823393


Review

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)