1. Cohen S. D., Movahhedi A., Salinier A. Galois Groups of Trinomials. Journal of Algebra, 1999, vol. 222, no. 2, pp. 561-573. https://doi.org/10.1006/jabr.1999.8033
2. Mukhopadhyay A., Murty M. R., Srinivas K. Counting squarefree discriminants of trinomials under abc. Proceedings of the American Mathematical Society, 2009, vol. 137, no. 10, pp. 3219-3226. https://doi.org/10.1090/s0002-9939-09-09831-1
3. Bremner A., Spearman B. K. Cyclic sextic trinomials x6+Ax+B. International Journal of Number Theory, 2010, vol. 6, no. 1, pp. 161-167. https://doi.org/10.1142/S1793042110002843
4. Sergeev A. E., Potemkina L. N. Parametric trinomials with alternating Galois group. Nauchnyi zhurnal KubGAU = Scientific journal of KubSAU, 2012, no. 76 (2), pp. 216-225 (in Russian).
5. Patsolic J., Rouse J. Trinomials defining quintic number fields. International Journal of Number Theory, 2017, vol. 13, no. 7, pp. 1881-1894. https://doi.org/10.1142/S1793042117501032
6. Eagle A. Series for all the Roots of a Trinomial Equation. The American Mathematical Monthly, 1939, vol. 46, no. 7, pp. 422-425. https://doi.org/10.2307/2303036
7. Cella O., Lettl G. Power series and zeroes of trinomial equations. Aequationes Mathematicae, 1992, vol. 43, no. 1, pp. 94-102. https://doi.org/10.1007/BF01840478
8. Kennedy E. C. Bounds for the Roots of a Trinomial Equation. The American Mathematical Monthly, 1940, vol. 47, no. 7, pp. 468-470. https://doi.org/10.1080/00029890.1940.11991003
9. Kim S.-H. Certain Trinomial Equation and Lacunary Polynomials. Communications of the Korean Mathematical Society, 2009, vol. 24, no. 2, pp. 239-245. https://doi.org/10.4134/CKMS.2009.24.2.239
10. Szabo P. G. On the roots of the trinomial equation. Central European Journal of Operations Research, 2010, vol. 18, no. 1, pp. 97-104. https://doi.org/10.1007/s10100-009-0130-2
11. Theobald T., de Wolff T. Norms of roots of trinomials. Mathematische Annalen, 2016, vol. 366, no. 1-2, pp. 219-247. https://doi.org/10.1007/s00208-015-1323-8
12. Brilleslyper M. A., Schaubroeck L. E. Counting Interior Roots of Trinomials. Mathematics Magazine, 2018, vol. 91, no. 2, pp. 142-150. https://doi.org/10.1080/0025570X.2017.1420332
13. Howell R., Kyle D. Locating trinomial zeros. Involve, a Journal of Mathematics, 2018, vol. 11, no. 4, pp. 711-720. https://doi.org//10.2140/involve.2018.11.711
14. Koiran P. Root separation for trinomials. Journal of Symbolic Computation, 2019, vol. 95, pp. 151-161. https://doi.org/10.1016/j.jsc.2019.02.004
15. Bilu Y., Luca F. Trinomials with given roots. Indagationes Mathematica, 2020, vol. 31, no. 1, pp. 33-42. https://doi.org/10.1016/j.indag.2019.09.001
16. Kravchenko V. F. Analytical method for solving trinomial algebraic equations using elementary functions Kml. Uchenye zapiski TsAGI = Scientific Notes of the Central Aerohydrodynamic Institute, 1988, vol. 19, no. 4, pp. 135-144 (in Russian).
17. Botta V. Roots of Some Trinomial Equations. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 2017, vol. 5, no. 1, pp. 1-5. https://doi.org/10.5540/03.2017.005.01.0024
18. Botta V., da Silva J. V. On the behavior of roots of trinomial equations. Acta Mathematica Hungarica, 2019, vol. 157, no. 1, pp. 54-62. https://doi.org/10.1007/s10474-018-0896-6
19. Kutischev G. P. Solving Algebraic Equations of Arbitrary Degree: Theory, Methods, Algorithms. Moscow, LKI Publ., 2019. 232 p. (in Russian).
20. Trubnikov Yu. V., Chernyavsky M. M. On the distribution of roots of trinomial algebraic equations of arbitrary degree. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta = Bulletin of Vitebsk State University, 2020, no. 1 (106), pp. 21-33 (in Russian).