Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Analysis of roots of trinomial polynomials

https://doi.org/10.29235/1561-2430-2024-60-4-280-294

Abstract

In the article we develop a simple and uniform method that allows one to calculate the number and localization of real solutions of three-term (trinomial) algebraic equations of arbitrary degree with real coefficients. The method is based on the fact that using certain substitutions, a three-term equation is reduced to an auxiliary equation with one parameter, represented as an explicit function of the coefficients of the initial equation, and the properties of the solutions of the initial equation depend only on the values of this parameter.

About the Author

M. M. Chernyavsky
Vitebsk State University named after P. M. Masherov
Belarus

Mikhail M. Chernyavsky – Senior Lecturer at the De
partment of Engineering Physics

33, Moskovskii Ave., 210038, Vitebsk



References

1. Cohen S. D., Movahhedi A., Salinier A. Galois Groups of Trinomials. Journal of Algebra, 1999, vol. 222, no. 2, pp. 561–573. https://doi.org/10.1006/jabr.1999.8033

2. Mukhopadhyay A., Murty M. R., Srinivas K. Counting squarefree discriminants of trinomials under abc. Proceedings of the American Mathematical Society, 2009, vol. 137, no. 10, pp. 3219–3226. https://doi.org/10.1090/s0002-9939-09-09831-1

3. Bremner A., Spearman B. K. Cyclic sextic trinomials x6+Ax+B. International Journal of Number Theory, 2010, vol. 6, no. 1, pp. 161–167. https://doi.org/10.1142/S1793042110002843

4. Sergeev A. E., Potemkina L. N. Parametric trinomials with alternating Galois group. Nauchnyi zhurnal KubGAU = Scientific journal of KubSAU, 2012, no. 76 (2), pp. 216–225 (in Russian).

5. Patsolic J., Rouse J. Trinomials defining quintic number fields. International Journal of Number Theory, 2017, vol. 13, no. 7, pp. 1881–1894. https://doi.org/10.1142/S1793042117501032

6. Eagle A. Series for all the Roots of a Trinomial Equation. The American Mathematical Monthly, 1939, vol. 46, no. 7, pp. 422–425. https://doi.org/10.2307/2303036

7. Cella O., Lettl G. Power series and zeroes of trinomial equations. Aequationes Mathematicae, 1992, vol. 43, no. 1, pp. 94–102. https://doi.org/10.1007/BF01840478

8. Kennedy E. C. Bounds for the Roots of a Trinomial Equation. The American Mathematical Monthly, 1940, vol. 47, no. 7, pp. 468–470. https://doi.org/10.1080/00029890.1940.11991003

9. Kim S.-H. Certain Trinomial Equation and Lacunary Polynomials. Communications of the Korean Mathematical Society, 2009, vol. 24, no. 2, pp. 239–245. https://doi.org/10.4134/CKMS.2009.24.2.239

10. Szabo P. G. On the roots of the trinomial equation. Central European Journal of Operations Research, 2010, vol. 18, no. 1, pp. 97–104. https://doi.org/10.1007/s10100-009-0130-2

11. Theobald T., de Wolff T. Norms of roots of trinomials. Mathematische Annalen, 2016, vol. 366, no. 1–2, pp. 219–247. https://doi.org/10.1007/s00208-015-1323-8

12. Brilleslyper M. A., Schaubroeck L. E. Counting Interior Roots of Trinomials. Mathematics Magazine, 2018, vol. 91, no. 2, pp. 142–150. https://doi.org/10.1080/0025570X.2017.1420332

13. Howell R., Kyle D. Locating trinomial zeros. Involve, a Journal of Mathematics, 2018, vol. 11, no. 4, pp. 711–720. https://doi.org//10.2140/involve.2018.11.711

14. Koiran P. Root separation for trinomials. Journal of Symbolic Computation, 2019, vol. 95, pp. 151–161. https://doi.org/10.1016/j.jsc.2019.02.004

15. Bilu Y., Luca F. Trinomials with given roots. Indagationes Mathematica, 2020, vol. 31, no. 1, pp. 33–42. https://doi.org/10.1016/j.indag.2019.09.001

16. Kravchenko V. F. Analytical method for solving trinomial algebraic equations using elementary functions Kml. Uchenye zapiski TsAGI = Scientific Notes of the Central Aerohydrodynamic Institute, 1988, vol. 19, no. 4, pp. 135–144 (in Russian).

17. Botta V. Roots of Some Trinomial Equations. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 2017, vol. 5, no. 1, pp. 1–5. https://doi.org/10.5540/03.2017.005.01.0024

18. Botta V., da Silva J. V. On the behavior of roots of trinomial equations. Acta Mathematica Hungarica, 2019, vol. 157, no. 1, pp. 54–62. https://doi.org/10.1007/s10474-018-0896-6

19. Kutischev G. P. Solving Algebraic Equations of Arbitrary Degree: Theory, Methods, Algorithms. Moscow, LKI Publ., 2019. 232 p. (in Russian).

20. Trubnikov Yu. V., Chernyavsky М. М. On the distribution of roots of trinomial algebraic equations of arbitrary degree. Vesnіk Vіtsebskaga dzyarzhaunaga unіversіteta = Bulletin of Vitebsk State University, 2020, no. 1 (106), pp. 21–33 (in Russian).


Review

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)