Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Optical nanolithography based on plasmon resonance

https://doi.org/10.29235/1561-2430-2024-60-4-335-343

Abstract

In this paper, we propose and investigate a scheme for optical nanolithography of the interference type based on the use of excitation of counter-propagating surface plasmon-polaritons at a flat interface of a metal-dielectric nanostructure. A detailed calculation of the optical nanolithography scheme designed to form sinusoidal diffraction gratings is performed. It is shown that the use of an input prism with a large refractive index allows increasing the gain of the light field formed in the photoresist by more than an order of magnitude. It is found, that by changing the thickness of the layers of the metal-dielectric structure it is possible to change the wave number at which the plasmon resonance condition is realized, and thereby to control the period of the formed gratings and the depth of field penetration into the photoresist. The proposed scheme may be used to create two-dimensional, circular gratings, as well as gratings of arbitrary shape with an appropriate choice of the shape of input prism.

About the Authors

S. N. Kurilkina
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Svetlana N. Kurilkina – Dr. Sc. (Physics and Mathematics), Professor, Chief Researcher

68-2, Nezavisimosti Ave., 220072, Minsk



N. A. Khilo
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Nikolai A. Khilo – Ph. D. (Physics and Mathematics), Associate Professor, Leading Researcher

68-2, Nezavisimosti Ave., 220072, Minsk



References

1. Polo, J. Electromagnetic Surface Waves: A Modern Perspective / J. Polo, T. Mackay, A. Lakhtakia. – Newnes, 2013. – 293 p. https://doi.org/10.1016/c2011-0-07510-5

2. Optical coherence and electromagnetic surface waves / Y. Chen [et al.] // Progress in Optics. – Elsevier, 2020. – Vol. 65. – P. 105–172. https://doi.org/10.1016/bs.po.2019.11.001

3. Bertolotti, M. Evanescent Waves in Optics: An Introduction to Plasmonics / M. Bertolotti, C. Sibilia, A. M. Guzman. – Cham: Springer, 2017. – 259 p. https://doi.org/10.1007/978-3-319-61261-4_2

4. Near-Field Optics and Surface Plasmon Polaritons / ed. S. Kawata. – Berlin: Springer, 2001. – 214 p. https://doi.org/10.1007/3-540-44552-8

5. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam / A. P. Vinogradov [et al.] // Phys. Rev. B. – 2018. – Vol. 97, №. 23. – Art. ID 235407. https://doi.org/10.1103/physrevb.97.235407

6. Simovski, C. An Introduction to Metamaterials and Nanophotonics / C. Simovski, S. Tretyakov. – Cambridge University Press, 2020. – 338 p. https://doi.org/10.1017/9781108610735

7. Sub-diffraction-limited optical imaging with a silver superlens / N. Fang [et al.] // Science. – 2005. – Vol. 308, № 5721. – P. 534–537. https://doi.org/10.1126/science.1108759

8. Plasmonic nanolithography / W. Srituravanich [et al.] // Nano Lett. – 2004. – Vol. 4, № 6. – P. 1085–1088. https://doi.org/10.1021/nl049573q

9. High-speed parallel plasmonic direct-writing nanolithography using metasurface-based plasmonic lens / Hu Yueqiang [et al.] // Engineering. – 2001. – Vol. 7, № 11. – P. 1623–1630. https://doi.org/10.1016/j.eng.2020.08.019

10. Wang, J. Thin metal superlens imaging in nanolithography / J. Wang, Y. Sheng // Int. J. Opt. – Vol. 2019. – Art. ID 6513836. https://doi.org/10.1155/2019/6513836

11. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: a review / C. Wang [et al.] // Micromachines. – 2016. – Vol. 7, № 7. – Art. ID 118. https://doi.org/10.3390/mi7070118

12. Mehrotra, P. A detailed study of resonance-assisted evanescent interference lithography to create high aspect ratio, super-resolved structures / P. Mehrotra, C. A. Mack, R. J. Blaikie // Opt. Express. – 2013. – Vol. 21, № 11. – P. 13170–13725. https://doi.org/10.1364/oe.21.013710

13. Plasmonic nano lithography with a high scan speed contact probe / Y. Kim [et al.] // Opt. Express. – 2009. – Vol. 17, № 22. – P. 19476–19485. https://doi.org/10.1364/oe.17.019476

14. Plasmonic lithography for fabricating nanoimprint masters with multi-scale patterns / H. Jung [et al.] // J. Micromech. Microeng. – 2015. – Vol. 25, № 5. – Art. ID 055004. http://dx.doi.org/10.1088/0960-1317/25/5/055004

15. Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lensbased active nano-gap control / W. S. Lee [et al.] // Appl. Phys. Lett. – 2015. – Vol. 106, № 5. – Art. ID 051111. https://doi.org/10.1063/1.4907653

16. High-speed plasmonic nanolithography with a solid immersion lens-based plasmonic optical head / T. Kim [et al.] // Appl. Phys. Lett. – 2012. – Vol. 101, № 16. – Art. ID 161109. https://doi.org/10.1063/1.4760263

17. Large-area surface-plasmon polariton interference lithography / X. Guo [et al.] // Opt. Lett. – 2006. – Vol. 31, № 17. – P. 2613–2615. https://doi.org/10.1364/OL.31.002613

18. Bendickson, J. M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures / J. M. Bendickson, J. P. Dowling, M. Scalora // Phys. Rev. E. – 1996. – Vol. 53. – P. 4107–4121. https://doi.org/10.1103/PhysRevE.53.4107


Review

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)