Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Approximate analytical expression for the topological percolation constant

https://doi.org/10.29235/1561-2430-2025-61-1-17-22

Abstract

In this paper, we obtain an approximate analytical expression for the topological percolation constant, which characterizes the most general topological properties of fractals, primarily such as connectivity near the percolation threshold. 

About the Author

P. S. Grinchuk
A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus
Belarus

Pavel S. Grinchuk – Corresponding Member of the Na tional Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Head of the Thermophysics department

15, P. Brovka Str., 220072, Minsk



References

1. Stauffer D., Aharony A. Introduction to Percolation Theory. New York, Taylor & Francis, 2018. 192 p. https://doi.org/10.1201/9781315274386

2. Sahimi M. Applications of Percolation Theory. London, CRC Press, 1994. 276 p. https://doi.org/10.1201/9781482272444

3. Grinchuk P. S. Cluster size distribution in percolation theory and fractal Cantor dust. Physical Review E, 2007, vol. 75, no. 4, art. ID 041118. https://doi.org/10.1103/physreve.75.041118

4. Grinchuk P. S., Rabinovich O. S. Surfaces of percolation systems in lattice problems. Physical Review E, 2003. vol. 67, no. 4, art. ID 046103. https://doi.org/10.1103/PhysRevE.67.046103

5. Grossman T., Aharony A. Accessible external perimeters of percolation clusters. Journal of Physics A: Mathematical and General, 1987, vol. 20, no. 17, pp. L1193. https://doi.org/10.1088/0305-4470/20/17/011

6. Furuberg L., Feder J., Aharony A., Jossang T. Dynamics of invasion percolation. Physical Review Letters, 1988, vol. 61, no. 18, art. ID 2117. https://doi.org/10.1103/physrevlett.61.2117

7. Sahimi M. Percolation and Polymer Morphology and Rheology. Sahimi M., Hunt A. G. (eds.). Complex Media and Percolation Theory. Encyclopedia of Complexity and Systems Science Series. New York, Springer, 2021. https://doi.org/10.1007/978-1-0716-1457-0_388

8. Milovanov A. V., Rasmussen J. J. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds. Physical Review B, 2002. vol. 66, no. 13, art. ID 134505. https://doi.org/10.1103/physrevb.66.134505

9. Zosimov V. V., Lyamshev L. M. Fractals in wave processes. Physics-Uspekhi, 1995, vol. 38, no. 4, pp. 347–384. https:// doi.org/10.1070/pu1995v038n04abeh000080

10. Lawler G. F., Schramm O., Werner W. The Dimension of the Planar Brownian Frontier is 4/3. Mathematical Research Letters, 2001, vol. 8, no. 4, pp. 401–411. https://doi.org/10.4310/mrl.2001.v8.n4.a1

11. Zelenyi L. M., Milovanov A. V. Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics. Physics-Uspekhi, 2004, vol. 47, no. 8, pp. 749–788. https://doi.org/10.1070/pu2004v047n08abeh001705

12. Grinchuk P., Danilova-Tretiak S. Fractal power law and polymer-like behavior for the metro growth in megacities. Chaos, Solitons & Fractals, 2025, vol. 194, art. ID 116137. https://doi.org/10.1016/j.chaos.2025.116137

13. Alexander S., Orbach R. Density of states on fractals: «fractons». Journal de Physique Lettres, 1982, vol. 43, no. 17, pp. 625–631. https://doi.org/10.1051/jphyslet:019820043017062500

14. Orbach R. Dynamics of fractal networks. Science, 1986, vol. 231, no. 4740, pp. 814–819. https://doi.org/10.1126/science.231.4740.814

15. Nakayama T., Yakubo K., Orbach R. L. Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations. Reviews of Modern Physics, 1994, vol. 66, no. 2, pp. 381. https://doi.org/10.1103/revmodphys.66.381

16. Milovanov A. V. Topological proof for the Alexander-Orbach conjecture. Physical Review E, 1997, vol. 56, no. 3, art. ID 2437. https://doi.org/10.1103/PhysRevE.56.2437

17. Fomenko A. T., Fuks D. B. Homotopical Topology. Moscow, Nauka Publ., 1989. 528 p. (in Russian).

18. Milovanov A. V., Zimbardo G. Percolation in sign-symmetric random fields: Topological aspects and numerical modeling. Physical Review E, 2000, vol. 62, no. 1, pp. 250. https://doi.org/10.1103/physreve.62.250

19. Milovanov A. V., Rasmussen J. J. Critical conducting networks in disordered solids: ac universality from topological arguments. Physical Review B, 2001, vol. 64, no. 21, pp. 212203. https://doi.org/10.1103/physrevb.64.212203


Review

Views: 323


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)