Vector Bessel-like beams with quadrature phases of electric and magnetic fields
https://doi.org/10.29235/1561-2430-2025-61-1-23-33
Abstract
The peculiarities of propagation of vector Bessel – Gaussian (BG) beams, the distinguishing feature of which is the quadrature of phases of electric and magnetic fields, are considered. The expression for vector BG beams is obtained on the basis of common approach in a form of linear superposition of known accurate solutions of the Maxwell equations. By selection of weight function of superposition there are found the equations for all components of electric and magnetic field of the BG beam, and also expressions for square field functions, such as linear density of energy, pulse and pulse moments along the direction of beam propagation. The particular case is considered when weight functions of the superposition do not depend on azimuthal mode index m of the vortex beam. For this case the expression is found for the ratio of linear density of the pulse moment to linear density of BG beam energy with a quadrature of electric and magnetic fields. From the equation obtained it follows that linear density of the pulse moment per one photon for non-paraxial beams essentially differs from the value ћ(m + 1) for large cone angles (of about several tens of degrees). Particularly, this result is important for the correct estimation of angular momentum of the field on the basis of measurement by the photoreceivers with direct detection of azimuthal index m, which are being developed in the recent time. It is also shown that when increasing the cone angle of BG beam its polarization differs from angular one, and the longitudinal component increases. Here the functional dependence of transverse and longitudinal components on radial coordinate is different. The obtained results are important when developing compact elements for the optical communication systems, microscopy, laser tweezers and others.
About the Authors
N. A. KhiloBelarus
Nikolai A. Khilo – Ph. D. (Physics and Mathematics), Associate Professor, Leading Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
V. N. Belyi
Belarus
Vladimir N. Belyi – Academician of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Head of the Center “Diagnostic systems”
68-2, Nezavisimosti Ave., 220072, Minsk
References
1. Dorn, R. Sharper Focus for a Radially Polarized Light Beam / R. Dorn, S. Quabis, G. Leuchs // Physical Review Letters. – 2003. – Vol. 91, № 23. – P. 233901. https://doi.org/10.1103/physrevlett.91.233901
2. Youngworth, K. S. Focusing of high numerical aperture cylindrical-vector beams / K. S. Youngworth, T. G. Brown // Optics Express. – 2000. – Vol. 7, № 2. – P. 77–87. https://doi.org/10.1364/oe.7.000077
3. Zhan, Q. Focus shaping using cylindrical vector beams / Q. Zhan, J. R. Leger // Optics Express. – 2002. – Vol. 10, № 7. – P. 324–331. https://doi.org/10.1364/oe.10.000324
4. Madhi, D. Cylindrically polarized Bessel–Gauss beams / D. Madhi, M. Ornigotti, A. Aiello // Journal of Optics. – 2015. – Vol. 17, № 2. – P. 025603. https://doi.org/10.1088/2040-8978/17/2/025603
5. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams / Q. Yang, Z. Xie, M. Zhang [et al.] // Nanophotonics. – 2022. – Vol. 11, № 5. – P. 1063–1070. https://doi.org/10.1515/nanoph-2021-0786
6. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes / L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman // Physical Review A. – 1992. – Vol. 45, № 11. – P. 8185–8189. https://doi.org/10.1103/physreva.45.8185
7. Allen, L. The orbital angular momentum of light / L. Allen, M. J. Padgett, M. Babiker // Progress in Optics. – Amsterdam: Elsevier, 1999. – Vol. 39. – P. 291–372. https://doi.org/10.1016/S0079-6638(08)70391-3
8. Free-Space Information Transfer Using Light Beams Carrying Orbital Angular Momentum / G. Gibson, J. Courtial, M. J. Padgett [et al.] // Optics Express. – 2004. – Vol. 12, № 22. – P. 5448−5456. https://doi.org/10.1364/opex.12.005448
9. Optical communications using orbital angular momentum beams / A. E. Willner, H. Huang, Y. Yan [et al.] // Advances in Optics and Photonics. – 2015. – Vol. 7, № 1. – P. 66–106. https://doi.org/10.1364/AOP.7.000066
10. Twisted light transmission over 143 km / M. Krenn, J. Handsteiner, M. Fink [et al.] // Proceedings of the National Academy of Sciences. – 2016. – Vol. 113, № 48. – P. 13648–13653. https://doi.org/10.1073/pnas.1612023113
11. Barnett, S. M. Orbital angular momentum and nonparaxial light beams / S. M. Barnett, L. Allen // Optics Communications. – 1994. – Vol. 110, № 5–6. – P. 670–678. https://doi.org/10.1016/0030-4018(94)90269-0
12. Barnett, S. M. Optical angular-momentum flux* / S. M. Barnett // Journal of Optics B: Quantum and Semiclassical Optics. – 2002. – Vol. 4, № 2. – P. S7. https://doi.org/10.1088/1464-4266/4/2/361
13. Orbital angular momentum of a high-order Bessel light beam / K. Volke-Sepulveda, V. Garcés-Chávez, S. ChávezCerda [et al.] // Journal of Optics B: Quantum and Semiclassical Optics. – 2002. – Vol. 4, № 2. – P. S82. https://doi.org/10.1088/1464-4266/4/2/373
14. Bouchal, Z. Non-diffractive vector Bessel beams / Z. Bouchal, M. Olivik J. // Journal of Modern Optics. – 1995. – Vol. 42, № 8. – P. 1555. https://doi.org/10.1080/09500349514551361
15. Khilo, N. A. Diffraction and order conversion of Bessel beams in uniaxial crystals / N. A. Khilo // Optics Communications. – 2012. – Vol. 285, № 5. – P. 503–509. https://doi.org/10.1016/j.optcom.2011.11.014
16. Lekner, J. Invariants of three types of generalized Bessel beams / J. Lekner // Journal of Optics A: Pure and Applied Optics. – 2004. – Vol. 6. – P. 837. https://doi.org/10.1088/1464-4258/6/9/004
17. Photocurrent detection of the orbital angular momentum of light / Zh. Ji, W. Liu, S. Krylyuk [et al.] // Science. – 2020. – Vol. 368, № 6492. – P. 763–767. https://doi.org/10.1126/science.aba9192
18. On-chip photodetection of angular momentums of vortex structured light / M. Dai, C. Wang, F. Sun, Q. J. Wang // Nature Communications. – 2024. – Vol. 15. – P. 5396. https://doi.org/10.1038/s41467-024-49855-0