Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Development of algorithms and programs for estimation of electron content and radiotomographic restoration of the electron concentration field in the ionosphere based on radio signals of satellite systems

https://doi.org/10.29235/1561-2430-2025-61-1-47-62

Abstract

The processes of scattering, dispersion and absorption accompanying the propagation of an electromagnetic wave lead to the fact that the radio signal slows down and weakens when passing through electron clusters in the ionosphere. The article solves the problem of restoration of the electron concentration field based on ionospheric radiography. The derivation of analytical relationships for determining the total electron content (TEC) in the ionosphere based on radio signals of the global navigation satellite system (GNSS) at two frequencies is considered. The methods for calculating TEC both from direct satellite signals and cross-relaying based on a small-sized CubeSat retransmission satellite are considered. Analytical relationships are given and algorithms for estimating TEC calculated based on phase and pseudo-distance measurements are described. They are then used to construct computing tomography algorithms in order to estimate the structures of the restored electron density images. As a result, the proposed radio tomography algorithms use TEC data to synthesize two-dimensional images of the electron concentration field in the ionosphere which allows the estimation both of the structure and dynamics of the ionosphere.

About the Authors

A. M. Krot
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Alexander M. Krot – Dr. Sc. (Engineering), Professor, Head of the Laboratory of Self-Organization System Modeling

6, Surganov Str., 220012, Minsk



I. E. Savinykh
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Irina E. Savinykh – Master Student, Laboratory of Self-Organization System Modeling

6, Surganov Str., 220012, Minsk



A. S. Shapkin
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Aliaksandr S. Shapkin – Postgraduate Student, Laboratory of Self-Organization System Modeling

6, Surganov Str., 220012, Minsk



References

1. Davies K. Ionospheric Radio Waves. Blaisdell Publ. Co., Waltham, Massachusetts etc., 1969. 502 p.

2. Bakit’ko R. V., Boldenkov E. N., Bulavskii N. T., Dvorkin V. V., Efimenko V. S., Kosenko V. E. [et al.]. GLONASS. Principles of Construction and Functioning. 4th ed. Moscow, Radiotekhnika Publ., 2010. 800 p. (in Russian).

3. Kunitsyn V. E., Tereshchenko E. D., Andreeva E. S. Radio Tomography of the Ionosphere. Moscow, Fizmatlit Publ., 2007. 336 p. (in Russian).

4. Afraimovich E. L., Perevalova N. P. GPS Monitoring of the Earth’s Upper Atmosphere. Irkutsk, GU NTs VSNTs SO RAN, 2006. 480 p. (in Russian).

5. Romanov A. A., Novikov A. A. Measurement of the total electron content of the Earth’s ionosphere using a multifrequency coherent sounding signal. Voprosy ehlektromekhaniki. Trudy NPP VNIIEHM = Electromechanical Matters. VNIIEM Studies, 2009, vol. 111, no. 4, pp. 31–36 (in Russian).

6. Belokonov I. V., Boltov E. A., Elisov N. A., Lomaka I. A., Nikolaev P. N., Shafran S. V. Family of nanosatellites for studying the ionosphere based on the SamSat platform developed by Samara University. Vos’moi Belorusskii kosmicheskii kongress, Minsk, 25–27 okt. 2022 g.: materialy kongressa. T. 1 [Eighth Belarusian Space Congress: Minsk, October 25–27, 2022. Materials of the Congress. Vol. 1]. Minsk, 2022, pp. 167–170 (in Russian).

7. Naumov A. O., Khmarskiy P. A., Byshnev N. I., Piatrouski M. A. Determination of total electron content in the ionosphere over the territory of the Republic of Belarus based on global navigation satellite systems data. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2024, vol. 69, no. 1, pp. 53–64 (in Russian). https://doi.org/10.29235/1561-8358-2024-69-1-53-64

8. Vierinen J., Norberg J., Lehtinen M. S., Amm O., Roininen L., Väänänen A., Erickson P. J., McKay-Bukowski D. Beacon satellite receiver for ionospheric tomography. Radio Science, 2014, vol. 49, no. 2, pp. 1141–1152. https://doi.org/10.1002/2014RS005434

9. Belokonov I. V., Krot A. М., Kozlov S. V., Kapliarchuk Y. А., Savinykh I. E., Shapkin А. S. A method for estimating the total electron content in the ionosphere based on the retransmission of signals from the global navigation satellite system GPS. Informatika = Informatics, 2023, vol. 20, no. 2, pp. 7–27 (in Russian). https://doi.org/10.37661/1816-0301-2023-20-2-7-27

10. Krot A. M., Savinykh I. E. Development of radiotomography algorithms for the study of electron clouds in the ionosphere and structures in the dusty plasma using low-orbital satellite systems. Proceedings of 15th Moscow Solar system Symposium (15M-S3), Space Research Institute, Moscow, Russia, 21–25 October, 2024. Moscow, 2024, pp. 230−231.

11. Ratcliffe J. A. The Magneto-Ionic Theory and its Applications to the Ionosphere. Cambridge, CUP Publ., 1959. 206 p.

12. Shapkin A. S. Algorithm for estimating the absolute total electron content of the ionosphere from dual-frequency phase and range satellite measurements. Informatika = Informatics, 2024, vol. 21, no. 1, pp. 48–64 (in Russian). https://doi.org/10.37661/1816-0301-2024-21-1-48-64

13. Mylnikova A. A., Yasyukevich Yu. V., Kunitsyn V. E., Padokhin A. M. Variability of GPS/GLONASS differential code biases. Results in Physics, 2015, vol. 5, pp. 9–10. https://doi.org/10.1016/j.rinp.2014.11.002

14. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global Positioning System: Theory and Practice. Springer Vienna, 2001. XXIV, 382 p. https://doi.org/10.1007/978-3-7091-6199-9

15. La Van Hieu, Ferreira V. G., Xiufeng He, Xu Tang. Study on cycle-slip detection and repair methods for a single dual-frequency global positioning system (GPS) receiver. Boletim de Ciências Geodésicas, 2014, vol. 20, no. 4, pp. 984–1004. https://doi.org/10.1590/s1982-21702014000400054

16. Changsheng Cai, Zhizhao Liu, Pengfei Xia, Wujiao Dai. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solutions, 2013, vol. 17, pp. 247–260. https://doi.org/10.1007/s10291-0120275-7

17. Ya’acob N., Abdullah M., Ismail M. Determination of GPS total electron content usingsingle layer model (SLM) ionospheric mapping function. International Journal of Computer Science and Network Security, 2008, vol. 8, no. 9, pp. 154–160.

18. Dudgeon D. E., Mersereau R. M. Multidimensional Digital Signal Processing. New Jersey, Prentice-Hall, 1984. 488 p.

19. Savinykh I. E. Radiotomographic analysis of ionosphere by deterministic methods. Fundamental’nye i prikladnye kosmicheskie issledovaniya: materialy XXI konferentsii, Moskva, 10–12 aprelya 2024 g. [Fundamental and Applied Space Research. Proceedings of XXI Conference, Moscow, 10–12 April 2024]. Moscow, 2024, pp. 157–158 (in Russian).

20. Krot A. M., Minervina H. B. Synthesis of fast-Fourier-transform (FFT) split-radix algorithms for real-valued and Hermite-symmetrical series. Radioelectronics and Communication Systems, 1989, vol. 32, no. 12, pp. 10–15.

21. Krot A. M., Minervina H. B. Comment: Conjugate pair fast Fourier transform. Electronics Letters, 1992, vol. 28, no. 12, pp. 1143–1144. https://doi.org/10.1049/el:19920721

22. Krot A. M., Minervina E. B. Fast Algorithms and Programs for Digital Spectral Processing of Signals and Images. Minsk, Navuka i tekhnika Publ., 1995. 407 p. (in Russian).


Review

Views: 194


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)