Preview

Methodology for measuring the transition electromagnetic form factor in the conversion decay ω → π0e+e with the CMD-3 detector

https://doi.org/10.29235/1561-2430-2025-61-4-320-329

Abstract

This paper presents an improved methodology for measuring the transition electromagnetic form factor in the conversion decay ω → π0e+e– using data collected by the CMD-3 detector at the VEPP-2000 e+e– collider. The key improvement involves the application of a kinematic reconstruction technique under two distinct hypotheses: the signal hypothesis (ω → π0e+e–) and the dominant background hypothesis (ω → π+π–π0). This approach allows for a powerful suppression of 3π background, virtually eliminating it, and significantly narrows the invariant mass distribution of two photons from π0 decay in signal events. The refined π0 mass peak enhances the separation of the signal process from the remaining QED background (e+e– → e+e–γγ). To demonstrate the effectiveness of the method, it was applied to a subset of the data with an integrated luminosity of 13 pb⁻¹, accumulated near ω-meson mass. The analysis shows a significant improvement in the precision of the form factor F(q) measurement. The developed methodology paves the way for a more precise determination of the form factor slope parameter Λ ω−2 when applied to the full dataset, which has an integrated luminosity of approximately 50 pb⁻¹.

About the Authors

D. N. Grigoriev
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences ; Novosibirsk State Technical University
Russian Federation

Dmitry N. Grigoriev – Ph. D. (Physics and Mathematics), Leading Researcher; Associate Professor

11, Academician Lavrent’ev Ave., 630090, Novosibirsk

20, K. Marks Ave., 630073, Novosibirsk,



V. F. Kazanin
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences ; Novosibirsk State University
Russian Federation

Vasily F. Kazanin – Ph. D. (Physics and Mathematics), Leading Researcher; Senior Lecturer in the Department of Physics, Specialized Education-Scientific Center

11, Academician Lavrent’ev Ave., 630090, Novosibirsk

2, Pirogov Str., 630090, Novosibirsk



V. L. Ivanov
Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vyacheslav L. Ivanov – Ph. D. (Physics and Mathematics), Researcher

11, Academician Lavrent’ev Ave., 630090, Novosibirsk 



D. V. Shoukavy
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Dzmitry V. Shoukavy – Ph. D. (Physics and Mathematics), Head of the Center, B. I. Stepanov Institute of Physics

68-2, Nezavisimosti Ave., 220072, Minsk



References

1. Landsberg L. G. Electromagnetic leptonic decays and structure of light mesons. Soviet Physics Uspekhi, 1985, vol. 28, art. ID 435. https://doi.org/10.1070/pu1985v028n06abeh003830

2. Dzhelyadin R. I., Golovkin S. V., Konstantinov A. S., Konstantinov V. F., Kubarovski V. P., Landsberg L. G., Mu­ khin V. A. [et al.]. Study of the electromagnetic transition form-factor in ω → π0μ+μ– decay. Physics Letters B, 1981, vol. 102, no. 4, pp. 296–298. https://doi.org/10.1016/0370-2693(81)90879-0

3. Arnaldi R., Banicz K., Borer K., Castor J., Chaurand B., Chen W., Cicalò C. [et al.] (NA60 Collaboration). Precision study of the η → μ+μ–γ and ω → μ+μ–π0 electromagnetic transition form-factors and of the ρ → μ+μ– line shape in NA60. Physics Letters B, 2016, vol. 757, pp. 437–444. https://doi.org/10.1016/j.physletb.2016.04.013

4. Adlarson P., Afzal F., Aguar-Bartolomé P., Ahmed Z., Annand J. R. M., Arends H. J., Bantawa K. [et al.]. Measurement of the ω → π0e+e– and η → e+e–γ Dalitz decays with the A2 setup at the Mainz Microtron. Physical Review C, 2017, vol. 95, art. ID 035208. https://doi.org/10.1103/physrevc.95.035208

5. Timoshenko M. V., Borin V. M., Zharinov Yu. M., Zemlyansky I. M., Kasaev A. S., Karpov G. V., Kirpotin A. N. [et al.]. Status of Vepp-2000 BINP Electron–Positron Collider. Physics of Particles and Nuclei Letters, 2020, vol. 17, pp. 419– 424. https://doi.org/10.1134/s1547477120040457

6. Khazin B. I. Physics and Detectors for VEPP-2000. Nuclear Physics B – Proceedings Supplements, 2008, vol. 181–182, pp. 376–380. https://doi.org/10.1016/j.nuclphysbps.2008.09.068

7. Grigoriev D. N., Vasilevskaya D. S., Ivanov V. L., Kazanin V. F., Kutsenko B. D., Shoukovy D. V. Preliminary result of studying the transition electromagnetic form factor in the conversion decay ω → π0e+e– on the CMD-3 detector. Physics of Particles and Nuclei, 2025, vol. 56, pp. 736–742. https://doi.org/10.1134/s1063779624702216

8. Ivanov V. L., Fedotovich G. V., Akhmetshin R. R., Amirkhanov A. N., Anisenkov A. V., Aulchenko V. M., Bashto­ voy N. S. [et al.] (CMD-3 Collaboration). Charged particle identification with the liquid xenon calorimeter of the CMD-3 detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, vol. 1015, art. ID 165761. https://doi.org/10.1016/j.nima.2021.165761

9. Amirkhanov A. N., Anisenkov A. V., Aulchenko V. M., Akhmetshin R. R., Bashtovoy N. S., Berkaev D. E., Bon­ dar A. E. [et al.]. The first measurement of the conversion decay of the omega meson into a neutral pion and an electron-po­ sitron pair at the CMD-3 detector. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2024, vol. 60, no. 1, pp. 52–71 (in Russian). https://doi.org/10.29235/1561-2430-2024-60-1-52-71

10. Gribanov S. S., Popov A. S. Kinematic and vertex fitting package for the CMD-3 experiment. Journal of Instru­ mentation, 2024, vol. 18, art. ID P05030. https://doi.org/10.1088/1748-0221/18/05/p05030


Review

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)