Preview

Polarization properties of a metasurface based on rectangular Ω-elements on a glass textolite substrate

https://doi.org/10.29235/1561-2430-2025-61-4-343-352

Abstract

The goal of this project is to create a new type of polarizer using printed circuit boards that can convert an incident linearly polarized wave into a reflected circularly polarized wave in the microwave range. This device represents a metamaterial surface consisting of a metal plate array made up of flat copper rectangular Ω-elements on a glass fiber substrate. By optimizing the shape of these elements, we found that they can also be used as absorbers for microwaves in addition to their ability to transform polarization. We showed that this form of Ω-resonators, which make up the metamaterial surface, are universal for use in THz polarizers. Finally, we investigated the polarization-selective properties of a metamaterial based on standard copper-coated fiberglass. This material exhibited polarization-selective properties near the resonant frequency in the microwave range and can be used as an effective polarization converter for microwaves.

About the Authors

M. A. Podalov
Francisk Skorina Gomel State University
Belarus

Maxim A. Podalov – Senior Lecturer of the Department of General Physics

104, Sovetskaya Str., 246028, Gomel 



I. V. Semchenko
SSPA “Optics, Optoelectronics, and Laser Technology”
Belarus

Igor V. Semchenko – Corresponding Member of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Professor, Deputy Director General for Research

68-1, Nezavisimosti Ave., 220072, Minsk 



A. L. Samofalov
Francisk Skorina Gomel State University
Belarus

Andrey L. Samofalov – Ph. D. (Physics and Mathematics), Associate Professor, Dean of the Faculty of Physics and Information Technology

104, Sovetskaya Str., 246028, Gomel 



S. A. Khakhomov
Francisk Skorina Gomel State University
Belarus

Sergei A. Khakhomov – Dr. Sc. (Physics and Mathematics), Associate Professor, Rector

104, Sovetskaya Str., 246028, Gomel 



References

1. Cheng Z., Cheng Y. A multi-functional polarization convertor based on chiral metamaterial for terahertz waves. Optics Communications, 2019, vol. 435, pp. 178–182. https://doi.org/10.1016/j.optcom.2018.11.038

2. Sun B., Yingying Y. Optical refractive index sensor based on the conjugated bilayer Г-shaped chiral metamaterials. Optik, 2019, vol. 182, pp. 587–593. https://doi.org/10.1016/j.ijleo.2019.01.028

3. Yu Y., Sun B. Analysis of giant circular dichroism metamaterial based on conductive coupling. Optik, 2019, vol. 182, pp. 1046–1052. https://doi.org/10.1016/j.ijleo.2019.02.019

4. Mirzamohammadi F., Nourinia J., Ghobadi C., Majidzadeh M. A bi-layered chiral metamaterial with high-performance broadband asymmetric transmission of linearly polarized wave. AEU – International Journal of Electronics and Communications, 2019, vol. 98, pp. 58–67. https://doi.org/10.1016/j.aeue.2018.11.008

5. Cheng Y. Z., Nie Y., Cheng Z. Z., Wang X., Gong R. Z. Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator. Applied Physics B, 2014, vol. 116, pp. 129–134. https://doi.org/10.1007/s00340-013-5659-z

6. Sakellari I., Yin X., Nesterov M. L., Terzaki K., Xomalis A., Farsari M. 3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle. Advanced Optical Materials, 2017, vol. 5, no. 16, art. ID 1700200. https://doi.org/10.1002/adom.201700200

7. Stojanović D. B., Beličev P. P., Radovanović J., Milanović V. Numerical parametric study of chiral effects and group delays in Ω element based terahertz metamaterial. Physics Letters A, 2019, vol. 383, no. 15, pp. 1816–1820. https://doi.org/10.1016/j.physleta.2019.02.035

8. Liu D. J., Xiao Z. Y., Ma X. L., Xu K. K., Tang J. Y., Wang Z. H. Broadband asymmetric transmission and polarization conversion of a linearly polarized wave based on chiral metamaterial in terahertz region. Wave Motion, 2016, vol. 66, pp. 1–9. https://doi.org/10.1016/j.wavemoti.2016.05.003

9. Liu D. J., Xiao Z. Y., Ma X. L., Wang Z. H. Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial. Optics Communications, 2015, vol. 354, рр. 272–276. https://doi.org/10.1016/j.optcom.2015.04.043

10. Semchenko I. V., Khakhomov S. A., Podalov M. A., Tretyakov S. A. Radiation of circularly polarized microwaves by a plane periodic structure of Ω elements. Journal of Communications Technology and Electronics, 2007, vol. 52, no. 9, pp. 1002–1005. https://doi.org/10.1134/S1064226907090082

11. Semchenko I. V., Khakhomov S. A., Samofalov A. L., Podalov M. A., Songsong Q. The effective optimal parameters of metamaterial on the base of omega-elements. Jabłoński R., Szewczyk R. (eds). Recent Global Research and Education: Technological Challenges: Proceedings of the 15th International Conference on Global Research and Education Inter-Academia 2016. Advances in Intelligent Systems and Computing, vol. 519. Springer, Cham, 2017, pp. 3–9. https://doi.org/10.1007/978-3-319-46490-9_1

12. Semchenko I., Khakhomov S., Samofalov A., Podalov M., Solodukha V., Pyatlitski A., Kovalchuk N. Omegastructured substrate-supported metamaterial for the transformation of wave polarization in THz frequency range. Luca D., Sirghi L., Costin C. (eds). Recent Advances in Technology Research and Education: Proceedings of the 16th International Conference on Global Research and Education Inter-Academia 2017. Advances in Intelligent Systems and Computing, vol. 660. Springer International Publishing, 2017, pp. 72–80. https://doi.org/10.1007/978-3-319-67459-9_10

13. Balmakou A., Podalov M., Khakhomov S., Stavenga D., Semchenko I. Ground-plane-less bidirectional terahertz absorber based on omega resonators. Optics Letters, 2015, vol. 40, no. 9, pp. 2084–2087. https://doi.org/10.1364/OL.40.002084

14. Semchenko I., Khakhomov S., Podalov M., Samofalov A. Polarization Properties of a Rectangular Balanced Omega Element in the THz Range. Várkonyi-Kóczy A. (eds). Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol. 101. Springer, 2020, pp. 84–93. https://doi.org/10.1007/978-3-030-36841-8_8

15. Lyakhnovich A. V., Semchenko I. V., Samofalov A. L., Podalov M. A., Sinitsyn G. V., Kravchenko A. Y., Kha­ khomov S. A. Terahertz Polarization-Resolved Spectra of the Metamaterial Formed by Optimally Shaped Omega Elements on a Silicon Substrate at Oblique Incidence of Waves. Photonics, 2024, vol. 11, no. 2, art. ID 163. https://doi.org/10.3390/photonics11020163

16. Semchenko I., Khakhomov S., Podalov M., Samofalov A. Microwave polarization converter consisting of rectangular omega resonators located on a dielectric substrate. 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), NYC. New York, 2021, pp. 386–388. https://doi.org/10.1109/metamaterials52332.2021.9577110


Review

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)