Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

SIMULATION OF TEMPERATURE DISTRIBUTION IN THE InGaN LED MATRIX WITH HIGH DENSITY OF RADIATION POWER

Abstract

The matrix consisting of 33 miniature LEDs of Rebel Z-series emitting in the blue-green region of the spectrum was created. The maximum emission power density of the matrix was ~ 18 W/cm2 at continuous injection current. A computer model describing the temperature distribution in the matrix of LEDs depending on the supplied electrical power was developed. The simulation results are consistent with the results of measurement of the matrix LEDs temperature by a thermal imager, as well as with the results of determination of the LED active region temperature by the optical method.

About the Authors

A. V. Danilchyk
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


A. G. Vainilovich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


M. V. Rzheutski
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


P. V. Shpak
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


V. V. Borushko
Brest State University named after A. S. Pushkin, Brest
Belarus


Yu. V. Trofimov
Center of LED and Optoelectronic Technologies of the National Academy of Sciences of Belarus, Minsk
Belarus


V. I. Tsvirko
Center of LED and Optoelectronic Technologies of the National Academy of Sciences of Belarus, Minsk
Belarus


E. V. Lutsenko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


G. P. Yablonskii
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


References

1. http://www.digikey.com/en/articles/techzone/2015/aug/the-incredible-shrinking-led

2. Study of a QCW light-emitting-diode (LED)-pumped solid-state laser / K. Lee [et al.] // J. Korean Phys. Soc. – 2011. – Vol. 59, no. 5. – P. 3239–3245.

3. Луценко, Е. В. Характеристики инжекционных лазеров видимого диапазона спектра и их возможные применения / Е. В. Луценко // Полупроводниковые лазеры: физика и технология: тез. докл. 4-го Всерос. симп. с междунар. участием, 10–13 нояб. 2014 г., Россия, Санкт-Петербург. – СПб., 2014. – С. 40.

4. Шуберт, Ф. Светодиоды: пер. с англ. / Ф. Шуберт; под ред. А. Э. Юновича. – 2-е изд. – М.: Физматлит, 2008. – С. 127–142.

5. Матрица светодиодов с принудительным охлаждением / А. В. Данильчик [и др.] // Полупроводниковые лазеры и системы на их основе: 9-й Белорус.-Рос. семинар, 28–31 мая 2013 г., Минск, Беларусь: сб. ст. – Минск, 2013. – С. 178–181.

6. Active region overheating temperature of commercial and active liquid cooled LEDs / E. V. Lutsenko [et al.] // Annual proceedings the technical university of Varna 2010. International Scientific and Applied Conference Opto-Nano Electronics and Renewable Energy Sources 2010, 21–25 Sept. 2010, St. Constantine and Helena Resort, Varna, Bulgaria: Proceedings. – [S. l.], 2010. – P. 38–42.

7. Efficiency droop suppression in InGaN-based blue LEDs: Experiment and numerical modeling / D. A. Zakheim [et al.] // Phys. Status Solidi A. – 2012. – Vol. 209, no. 3. – P. 456–460.

8. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes / Q. Dai [et al.] // Appl. Phys. Lett. – 2010. – Vol. 97, iss. 13. – P. 133507-1–133507-3.


Review

Views: 631


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)