BACTERICIDAL COMPONENTS IN AN AIR PLASMA JET WITHIN DC AND RIPPLE CURRENT REGIMES
Abstract
Atmospheric pressure air plasma jets within dc, pulsed and self-oscillatory current regimes are realized. It is shown that the main mechanism of inactivation of bacteria Staphylococcus aureus is the effect of chemically active molecules of NO, NO2 and HNO2. The method of IR absorption spectroscopy is used to investigate chemical active component concentrations. The optimal regime of discharge inducing plasma jets, which is more suitable for production of bactericidal components, is found.
About the Authors
V. I. ArkhipenkoBelarus
A. A. Kirillov
Belarus
A. V. Paulava
Belarus
L. V. Simonchik
Belarus
N. V. Dudchik
Belarus
M. M. Kuraica
Belarus
B. М. Obradović
Czechoslovakia
References
1. Fridman, А. Plasma Medicine / А. Fridman, G. Friedman. – New York: Wiley, 2013.
2. Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology / M. Laroussi [et. al.]. – Cambridge: Cambridge University Press, 2012.
3. Plasma medicine: an introductory review / M .G. Kong [et. al.] // New J. Phys. – 2009. – No. 11. – 115012, 35 p.
4. Plasma-Based Pollutant Degradation in Gas Streams: Status, Examples and Outlook / R. Brandenburg [et. al.] // Contrib. Plasma Phys. – 2014. – Vol. 54, no. 2. – P. 202–214.
5. Lu, X. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets / X. Lu, M. Laroussi, V. Puech // Plasma Sources Sci. Technol. – 2012. – Vol. 21. – 034005, 17 p.
6. Characterization of microwave plasma torch for decontamination / T. Shimizu [et al.] // Plasma Process Polym. – 2008. – Vol. 5. – P. 577–582.
7. Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions / Gweon Bomi [et al.] // Curr. Appl. Phys. – 2009. – Vol. 9. – P. 625–628.
8. Förster, S. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy / S. Förster, C. Mohr, W. Viöl // Surf. Coat. Technol. – 2005. – No. 200. – P. 827–830.
9. Inactivation of Bacteria in an Aqueous Environment by a Direct-Current, Cold-Atmospheric-Pressure Air Plasma Microjet / F. Liu [et. al.] // Plasma Process. Polym. – 2010. – Vol. 7. – P. 231–236.
10. Применение плазменной струи тлеющего разряда атмосферного давления на постоянном токе для инактивации Staphylococcus aureus / A. A. Кириллов [и др.] / Приклад. физика. – 2013. – № 5. – C. 52–55.
11. DC atmospheric pressure glow microdischarges in the current range from microamps up to amperes / V. I. Arkhipenko [et al.] // Eur. Phys. J. D. – 2010. – No. 60. – P. 455–463.
12. Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases / V. I. Arkhipenko [et. al.] // Eur. Phys. J. D. – 2012. – No. 66. – P. 252, 11 p.
13. The HITRAN Database [Electronic resource]. – Mode of access: http://www.cfa.harvard.edu/HITRAN/. – Date of access: 03.02.2015.
14. Walsh, J. L. Portable nanosecond pulsed air plasma jet / J. L. Walsh, M. G. Kong // Appl. Phys. Lett. – 2011. – No. 99. – 081501.
15. Nanosecond repetitively pulsed discharges in air at atmospheric pressure – the glow regime / D. Z. Pai [et. al.] // Plasma Sources Sci. Technol. – 2009. – Vol. 18. – 045030.
16. Direct current plasma jet at atmospheric pressure operating in nitrogen and air / X. L. Deng. [et. al.] // J. Appl. Phys. – 2013. – No. 113. – 023305.