Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

IMPLICIT METHOD FOR SOLVING A SELF-ADJOINT ILL-POSED PROBLEM WITH AN APPROXIMATE OPERATOR AND AN A POSTERIORI CHOICE OF THE REGULARIZATION PARAMETER

Abstract

Тhе implicit iteration method for solution of the first-kind operator equations with a non-negative self-adjoint bounded operator in the Hilbert space is proposed. Convergence of the method is proved in the case of an a posteriori choice of the regularization parameter in the usual norm of the Hilbert space, supposing that not only the right hand-side of the equation, but also the operator have errors. Тhе estimates of a method error and an a posteriori stop moment are obtained. 

About the Author

O. V. Matysik
Brest State University named after A. S. Pushkin, Brest
Belarus


References

1. Вайникко, Г. М. Итерационные процедуры в некорректных задачах / Г. М. Вайникко, А. Ю. Веретенников. – М.: Наука, 1986.

2. Матысик, О. В. Явные и неявные итерационные процедуры решения некорректно поставленных задач / О. В. Матысик. – Брест: БрГУ им. А. С. Пушкина, 2014.

3. Matysik, O. V. Implicit iteration method of solving linear equations with approximating right-hand member and approximately specified operator / O. V. Matysik // J. Numer. Appl. Math. – 2014. – N 2 (116). – P. 28–34.

4. Люстерник, Л. А. Элементы функционального анализа / Л. А. Люстерник, В. И. Соболев. – М.: Наука, 1965.

5. Канторович, Л. В. Функциональный анализ в нормированных пространствах / Л. В. Канторович, Г. П. Акилов. – М.: Физматгиз, 1959.


Review

Views: 512


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)