DIRAC – KAHLER PARTICLE IN THE LOBACHEVSKY SPACE, NON-RELATIVISTIC APPROXIMATION, BOSON INTERPRETATION
Abstract
The article is concerned with constructing the exact solutions for the Dirac – Kahler wave equation in the non-relativistic approximation for the simplest non-Euclidean geometrical model – hyperbolic Lobachevsky space. For the minimum value of the conserved angular momentum j = 0, the radial equations reduce to those solved in the elementary function. For greater values j = 1, 2, 3, ..., the radial equations reduce to a couple of the four-order differential equations that are solved with the help of the factorization method. The general solution to each four-order order equation, involving four fundamental solutions, is constructed. The obtained solutions of the Dirac – Kahler wave equation cannot be solved in terms of the Pauli solutions on the background of Lobachevsky space, therefore any fermion interpretation for the Dirac – Kahler particle cannot be used.
About the Authors
E. M. OvsiyukBelarus
A. N. Red’ko
Belarus
V. M. Red’kov
Belarus
References
1. Стражев, В. И. Уравнение Дирака – Кэлера, классическое поле / В. И. Стражев, И. А. Сатиков, В. А. Ционенко. – Минск: БГУ, 2007.
2. Плетюхов, В. А. Группа Лоренца и теория релятивистских волновых уравнений / В. А. Плетюхов, В. М. Редьков, В. И. Стражев. – Минск: Беларус. навука, 2015.
3. Редьков, В. М. Поля частиц в римановом пространстве и группа Лоренца / В. М. Редьков. – Минск: Беларус. навука, 2009.
4. Варшалович, Д. А. Квантовая теория углового момента / Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский. – Л.: Наука и техника, 1975.
5. Red’kov, V. M. Quantum mechanics in spaces of constant curvature / V. M. Red’kov, E. M. Ovsiyuk. – New York: Nova Science Publ, 2012.