Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

DIRAC – KAHLER PARTICLE IN THE LOBACHEVSKY SPACE, NON-RELATIVISTIC APPROXIMATION, BOSON INTERPRETATION

Abstract

The article is concerned with constructing the exact solutions for the Dirac – Kahler wave equation in the non-relativistic approximation for the simplest non-Euclidean geometrical model – hyperbolic Lobachevsky space. For the minimum value of the conserved angular momentum j = 0, the radial equations reduce to those solved in the elementary function. For greater values j = 1, 2, 3, ...,  the radial equations reduce to a couple of the four-order differential equations that are solved with the help of the factorization method. The general solution to each four-order order equation, involving four fundamental solutions, is constructed. The obtained solutions of the Dirac – Kahler wave equation cannot be solved in terms of the Pauli solutions on the background of Lobachevsky space, therefore any fermion interpretation for the Dirac – Kahler particle cannot be used. 

About the Authors

E. M. Ovsiyuk
Mozyr State Pedagogical University named after I. P. Shamyakin, Mozyr
Belarus


A. N. Red’ko
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


V. M. Red’kov
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


References

1. Стражев, В. И. Уравнение Дирака – Кэлера, классическое поле / В. И. Стражев, И. А. Сатиков, В. А. Ционенко. – Минск: БГУ, 2007.

2. Плетюхов, В. А. Группа Лоренца и теория релятивистских волновых уравнений / В. А. Плетюхов, В. М. Редьков, В. И. Стражев. – Минск: Беларус. навука, 2015.

3. Редьков, В. М. Поля частиц в римановом пространстве и группа Лоренца / В. М. Редьков. – Минск: Беларус. навука, 2009.

4. Варшалович, Д. А. Квантовая теория углового момента / Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский. – Л.: Наука и техника, 1975.

5. Red’kov, V. M. Quantum mechanics in spaces of constant curvature / V. M. Red’kov, E. M. Ovsiyuk. – New York: Nova Science Publ, 2012.


Review

Views: 694


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)