FUZZY C-MEANS CLUSTERING METHOD WITH THE GIBBS PENALTY FUNCTION AND ARBITRARY POWERS OF THE VECTOR ACCESSORIES
Abstract
A new version of the Fuzzy C-means clustering method, which we have called the Fuzzy C-means with the Gibbs Penalty (GPFCM), is introduced. The algorithm is designed to cluster gray scale, color and multichannel images. The specificity of the algorithm is to use the additive Gibbs penalty function in order to control the local smoothness of cluster representations of images in the regions of image homogeneity. The local smoothness of the solutions found by the GPFCM depends on the values of the coefficients of the penalty function. In turn, these coefficients can be taken as functions of magnitude and direction of the image gradient. Unlike the standard Fuzzy C-means clustering algorithm, which is unstable with respect to image noise and distortions, the proposed GPFCM allows building robust cluster approximations of noisy and corrupted pictures. Algorithm properties are illustrated on real images. Experiments have shown that on the one hand, the algorithm properly represents the homogeneous image regions as separate clusters and, on the other hand, it prevents the merging of different homogeneous areas.
About the Authors
B. A. ZaleskyBelarus
E. N. Seredin
Belarus
References
1. Steinhaus, H. Sur la division des corps materiels en parties / H. Steinhaus // Bull. Acad. Polon. – 1956. – Vol. 4 (12). – P. 801–804.
2. Lloyd, S. Least square quantization in PCM’s / S. Lloyd. – Bell Telephone Laboratories Paper, 1957.
3. Bezdek, J. C. Pattern Recognition with Fuzzy Objective Function Algoritms / J. C. Bezdek. – [S. l.]: Kluwer Academic Publishers Norwell, 1981.
4. Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс. – М.: Техносфера, 2005.
5. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition / F. Höppner [et al.]. – New York: John Wiley & Sons, 1999.
6. MacQueen, J. B. Methods for classification and Analysis of Multivariate Observations / J. B. MacQueen // Proc. 5th Berkeley Symр. on Math. Statistics and Probability. – Berkeley, 1967. – P. 281–297.
7. Cenitha, C. H. Classification of satellite images using new fuzzy cluster centroid for unsupervised classification algorithm // C. H. Cenitha, Dr. K. Vani // Proc. IEEE Conf. on Inform. and Commun. Technologies ICT, 2013. – [S. l.], 2013. – P. 203–207.
8. Залесский, Б. А. Метод нечеткой кластеризации k-средних со сглаживающей штрафной функцией / Б. А. Залесский // Информатика. – 2014. – № 43. – С. 14–20.