WHITEHEAD GROUPS, REDUCED NORMS AND CYCLICITY OF SOME SPECIAL AZUMAYA ALGEBRAS
Abstract
We describe the multiplicative structure and the reduced norms for central division k-algebras A in the two following cases: (i) let k be a completion of the function field of the p-adic curve with respect to discrete valuations with finite extensions of Qp as residue fields and let A be tamely ramified division k-algebra; (ii) let A be skew-fields of non-commutative rational functions over p-adic division algebras. We also obtain some sufficient conditions for cyclicity of algebras from (i). In particular we prove that any algebra of square-free index from (i) is cyclic.
About the Author
V. I. YanchevskiĭBelarus
References
1. Draxl, P. SK1 von Schiefkorpern / P. Draxl, M. Kneeser // Lectures Notes Math. – 1977. – Vol. 778. – P. 1–124.
2. Merkurjev, A. S. Suslin’s conjecture on the reduced Whitehead group of a simple algebrs / A. S. Merkurjev // J. Amer. Math. Soc. Published electronically. – 2015. – November 17.
3. Saltman, D. Cyclic algebras over p-adic curves / D. Saltman // J. Algebra. – 2007. – Vol. 314. – P. 817–843.
4. Янчевский, В. И. Приведенные нормы простых алгебр над функциональными полями / В. И. Янчевский // Тр. МИАН СССР. – 1990. – Т. 183. – С. 215–222.
5. Янчевский, В. И. Приведенная унитарная K-теория и тела над гензелевыми дискретно нормированными полями / В. И. Янчевский // Изв. АН СССР. Сер. математика. – 1978. – Т. 42, № 4. – С. 879–918.
6. Yanchevskii, V. I. Reduced unitary Whitehead groups of skew fields of noncommutative rational functions / V. I. Yanchevskii // J. of Sov. Mathematics. – 1982. – Vol. 19, iss. 1. – P. 1067–1071.