Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

ALGORITHMIC PROPERTIES OF CONNECTED NEIGHBOURHOOD SETS IN GRAPHS

Abstract

We introduce and characterize the class of graphs in which every connected dominating set is a (connected) neighbourhood set and a class of graphs whose all connected induced subgraphs have equal minimum neighbourhood set and minimum connected neighbourhood set cardinalities. Assuming P ≠ NP, we also prove that the minimum connected neighbourhood set problem cannot be approximated within a logarithmic factor in polynomial time in their common subclass, the class of simplicial split graphs.

About the Author

Y. A. KARTYNNIK
Belarusian State University
Belarus


References

1. Sampathkumar, E. The neighbourhood number of a graph / E. Sampathkumar, P. S. Neeralagi // Indian J. Pure Appl. Math. – 1985. – Vol. 16. – P. 126–132.

2. Sampathkumar, E. The connected domination number of a graph / E. Sampathkumar, H. B. Walikar // J. Math. Phys. Sci. – 1979. – Vol. 13. – P. 607–613.

3. Sampathkumar, E. Independent, perfect and connected neighbourhood numbers of a graph / E. Sampathkumar, P. S. Neeralagi // J. Comb. Inf. Syst. Sci. – 1994. – Vol. 19. – P. 139–145.

4. Картынник, Ю. А. Доминантно-треугольные графы и графы верхних границ / Ю. А. Картынник, Ю. Л. Орлович // Докл. Нац. акад. наук Беларуси. – 2014. – Т. 58, № 1. – С. 16– 25.

5. Földes, S. Split graphs / S. Földes, P. L. Hammer // Congress. Numer. – 1978. – No. 19. – P. 311–315.

6. Тышкевич, Р. И. Каноническое разложение графа, определяемого степенями его вершин / Р. И. Тышкевич, А. А. Черняк // Изв. АН БССР. Сер. физ.-мат. наук. – 1979. – Т. 5. – С. 14–26.

7. Лекции по теории графов / В. А. Емеличев [и др.]. – М.: Наука, 1990.

8. Гэри, М. Вычислительные машины и труднорешаемые задачи / М. Гэри, Д. Джонсон. – М.: Мир, 1982.

9. Zverovich, I. E. Perfect connected-dominant graphs / I. E. Zverovich // Discuss. Math. Graph Theory. – 2003. – Vol. 23. – P. 159–162.


Review

Views: 740


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)