Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

CLASSICAL SOLUTION TO THE FIRST MIXED PROBLEM FOR THE ONE-DIMENSIONAL WAVE EQUATION WITH THE CAUCHY-TYPE CONDITIONS

Abstract

This article considers the first mixed problem for the one-dimensional wave equation with the second-order Cauchy-type conditions. The authors of the article prove that the usage of necessary and sufficient homogeneous matching conditions guarantees the classical solution in the middle of the plane between two parallel straight lines. The article gives the classical solution to the one-dimensional wave equation in analytical form if there are Dirichlet conditions at the side boundaries and Cauchy-type conditions at the plane bottom. By the classical solution is understood the function that is determined at all points of closing the defined domain. This function must have all classical derivatives included in the equation. In case of inhomogeneous matching conditions, the correct problem is formulated with the addition of the conjugation conditions.

About the Authors

V. I. Korzyuk
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk; Belarusian State University, Minsk
Belarus


I. S. Kozlovskaya
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk; Belarusian State University, Minsk
Belarus


S. N. Naumavets
Belarusian State University, Minsk; Brest State Technical University
Belarus


References

1. Корзюк В. И., Чеб Е. С., Ширма М. С. // Тр. Ин-та математики НАН Беларуси. 2009. Т. 17, № 2. С. 23–34.

2. Корзюк В. И., Козловская И. С. // Тр. Ин-та математики НАН Беларуси. 2010. Т. 18, № 2. С. 22–35.

3. Корзюк В. И., Козловская И. С. // Тр. Ин-та математики НАН Беларуси. 2011. Т. 19, № 1. С. 62–70.

4. Korzyuk V. I., Erofeenko V. T., Sheyka J. V. // Mathematical Modeling and Analysis. 2012. Vol. 17, N 3. P. 309–329.

5. Korzyuk V. I., Kozlovskaya I. S., Kovnatskaya O. A. // Computer Algebra Systems in Teaching and Research. Differential Equations, Dynamical Systems and Celestial Mechanics, Eds.: L. Gadomski et all. Siedlce, Wydawnictwo Collegium Mazovia. 2011. P. 68–78.

6. Корзюк В. И., Козловская И. С., Шейко Ю. В. // Аналитические методы анализа и дифференциальных уравнений: материалы 6-й Междунар. конф., посвящ. памяти проф. А. А. Килбаса. AMADE-2011. Минск, 2011. С. 97–108.

7. Корзюк В. И., Чеб Е. С., Карпечина А. А. // Тр. Ин-та математики НАН Беларуси. 2012. Т. 20, № 2. С. 64–74.

8. Корзюк В. И., Чеб Е. С., Карпечина А. А. // Весцi НАН Беларусi. Сер. фiз.-мат. навук. 2013. № 1. С. 71–80.

9. Корзюк В. И., Чеб Е. С., Карпечина А. А. // Математическое моделирование и дифференциальные уравнения: тр. третьей междунар. науч. конф., Брест, 17–22 сент. 2012 г. Минск, 2012. С. 177–185.

10. Korzyuk V. I., Kozlovskaya I. S. // Computer Algebra Systems in Teaching and Research. Siedlce, 2013. Vol. 4, N 1. P. 53–65.

11. Корзюк В. И., Козловская И. С. // Докл. НАН Беларуси. 2013. Т. 57, № 5. С. 37–42.

12. Моисеев Е. И., Корзюк В. И., Козловская И. С. // Дифференц. уравнения. 2014. Т. 50, № 10. С. 1373–1385.

13. Корзюк В. И., Козловская И. С. // Дифференц. уравнения. 2012. Т. 48, № 5. С. 700–709.

14. Корзюк В. И., Козловская И. С. // Докл. НАН Беларуси. 2011. Т. 55, № 5. С. 9–13.


Review

Views: 1536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)