EVALUATION OF FUNCTIONAL INTEGRALS USING STURM SEQUENCES
Abstract
and eigenvectors of operator. The proposed method is effective for calculation of functional integrals over a space of functions defined on the intervals of large length.
About the Author
V. B. MalyutinBelarus
Dr. Sc. (Physics and Mathematics), Leading Researcher
References
1. Yanovich L.A. Approximate calculation of continual integrals through the Gaussian measures. Minsk, Nauka i tekhnika, 1976. 383 p. (in Russian)
2. Egorov A.D., Sobolevsky P.I., Yanovich L.A. Approximate methods for calculation of continual integrals. Minsk, Nauka i tekhnika, 1985. 310 p. (in Russian)
3. Egorov A.D., Sobolevsky P.I., Yanovich L.A. Functional integrals: Approximate evaluation and Applications. Dordrecht, Kluwer Academic Pablishers, 1993.
4. Egorov A.D., Zhidkov E.P., Lobanov Yu.Yu. An introduction to the theory and application of functional integration. Мoscow: Fizmatlit, 2006. 400 p. (in Russian)
5. Langouche F., Roekaerts D., Tirapegui E. Functional integration and semi-classical expansions. Dordrecht, D. Reidel Pub.Co., 1982. 324 p.
6. Wio H.S. Application of Path Integration to Stochastic Processes: An Introduction. World Scientific Publishing Company, 2013. 176 p.
7. Glimm J., Jaffe A. Quantum Physics. A functional integral point of view. Berlin-Heidelberg-New York, Springer-Verlag, 1981. 417 p.
8. Feynman R.P., Hibbs A.R. Quantum mechanics and path integrals. New York, McGraw-Hill, 1965. 377 p.
9. Kleinert H. Path integrals in quantum mechanics, statistics polymer physics, and financial markets. Singapore: World Scientific Publishing, 2004. 1592 p.
10. Bogolyubov N.N., Shirkov D.V. An introduction to the theory of quantum fields. Мoscow, Nauka, 1976. 479 p. (in Russian)
11. Elepov B.S., Kronberg A.A., Mikhailov G.A., Sabel’fel’d K.K. Solution of boundary-value problems by the Monte-Carlo method. Novosibirsk: Nauka, 1980. 174 p.
12. Sabel’fel’d K.K. Approximate evaluation of wiener continual integrals by the Monte Carlo method. USSR Computational Mathematics and Mathematical Physics, 1979, vol. 19, no. 1, pp. 29–43. doi:10.1016/0041-5553(79)90064-8.
13. Risken H., Frank T. The Fokker-Plank equation: methods of solution and applications. Springer-Verlag, 1984. 472 p.doi:10.1007/978-3-642-61544-3.
14. Wilkinson J.H. The algebraic eigenvalue problem. Oxford, 1965. 662 p.