MONOTONE DIFFERENCE SCHEMES FOR THE SCHNACKENBERG MODEL
Abstract
conditions are constructed. This model is a semi-nonlinear reaction-diffusion system, and it plays an important role in mathematical modeling in the fields of physical chemistry and biology. In constructing a monotone difference scheme for this model with the Neumann boundary condition, the idea of half-integral nodes at the boundary points under the secondkind boundary conditions is used. The results of numerical experiments have confirmed the effectiveness of the suggested methods. the numerical solution without nonphysical oscillation is obtained.
About the Author
Thi Kim Tuyen VoBelarus
Postgraduate
References
1. Matus P.P., Tuyen V., Gaspar F. Monotone difference schemes for linear parabolic equation with mixed boundary conditions. Doklady Natsional’noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2014, vol. 58, no. 5, pp. 18–22. (in Russian)
2. Samarskiy A.A. The theory of difference schemes. Moscow, Nauka, 1977. 656 p. (in Russian)
3. Matus P.P. The maximum principle and same its applications. Computational Methods in Applied Mathematics, 2002, vol. 2, no. 1, pp. 50–91. doi: 10.2478/cmam-2002-0004.
4. Matus P.P., Rybak I.V. Monotone difference schemes for nonlinear parabolic equations. Differential equations, 2003, vol. 39, no. 7, pp. 1013–1022. doi: 10.1023/B:DIEQ.0000009197.94879.5c.
5. Farago I., Horvath R. Discrete maximum principle and adequate discretizations of linear parabolic problems. SIAM Journal on Scientific Computing, 2006, vol. 28, no. 6, pp. 2313–2336. doi:10.1137/050627241.
6. Farago I., Karatson J., Korotov S. Discrete maximum principles for nonlinear parabolic pde systems. IMA Journal of Numerical Analysis, 2012, vol. 32, no. 4, pp. 1541–1573. doi: 10.1093/imanum/drr050.
7. Gaspar F.J., Lisbona F.J., Matus P., Tuyen V. T. K. Numerical methods for a one-dimensional non-linear Biot’s model. Journal of Computational and Applied Mathematics, 2016, vol. 293, pp. 62–72. doi:10.1016/j.cam.2015.03.039.
8. Gaspar F.J., Matus P., Tuyen V. T. K, Hieu L.M. Monotone difference schemes for systems of elliptic and parabolic equations systems. Doklady Natsional’noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2016, vol. 60, no. 5, pp. 29–33. (in Russian)
9. Murray J.D. Mathematical Biology. 2nd ed. Springer-Verlag Berlin, 1993.
10. Manaa S.A. Some numerical methods for Schnackenberg model. International Journal of Engineering Inventions, 2013, vol. 2, no. 2, pp. 71–78.
11. Liu P., Shi J., Wang Y., Feng X. Bifurcation analysis of reaction–diffusion Schnakenberg model. Journal of Mathematical Chemistry, 2013, vol. 51, no. 8, pp. 2001–2019. doi: 10.1007/s10910-013-0196-x.
12. Mitidieri E., Sweer G. Weakly coupled elliptic systems and positivity. Mathematische Nachrichten, 1995, vol. 173, no. 1, pp. 259–286. doi: 10.1002/mana.19951730115.
13. Manaa S.A., Saeed R.K., Easif F.H. Numerical Solution of Brusselator Model by Finite Difference Method. Journal of Applied Sciences Research, 2010, vol. 6, no. 11, pp. 1632–1646.