Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

CHANGE IN THE Cu2ZnSnS4 SINGLE CRYSTALS DIELECTRIC PROPERTIES INDUCED BY ELECTRON IRRADIATION

Abstract

The quaternary compound Cu2ZnSnS4 was synthesized by the one-temperature method from the elementary components. Single crystals of Cu2ZnSnS4 were grown by chemical gas-transmission. Samples were prepared in the form of plane singlecrystal plates with a size of more than 2×5×0.5 mm. The electrical conductivity and dielectric properties of Cu2ZnSnS4 single crystals are investigated in the temperature range 100–300 K at the measuring field frequencies of 103–106 Hz. Non-irradiated samples and those irradiated by electrons with an energy of 4 MeV and doses of 1015 and 1016 cm-2are studied. It is shown that the absolute values of the studied characteristics increase with temperature. The curves σ = f(T) have the areas with different slopes, which indicates the presence of several types of conduction in the investigated semiconductors. The dispersion of the dielectric properties of the studied single crystals is revealed: as the frequency is increased, dielectric constant values decrease and, as electrical conductivity is increased, these values grow. Increasing the radiation decreases dielectric permittivity and causes a significant growth of electrical conductivity in the entire investigated temperature range.

About the Authors

V. G. Hurtavy
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus
Russian Federation
Researcher


A. U. Sheleg
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus
Russian Federation
D. Sc. (Physics and Mathematics), Professor, Chief Researcher


References

1. Jackson P., Hariskos D., Wuerz R., Wischmann W., Powalla M. Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%. Physica Status Solidi (RRL) – Rapid Research Letters, 2014, vol. 8, no. 3, pp. 219–222. doi: 10.1002/pssr.201409040.

2. Jackson P., Hariskos D., Wuerz R., Kiowski O., Bauer A., Friedlmeier T.M., Powalla M. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi (RRL) – Rapid Research Letters, 2015, vol. 9, no. 1, pp. 28–31. doi: 10.1002/pssr.201409520.

3. Grossberg M., Krustok J., Raudoja J., Raadik T. The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Applied Physics Letters, 2012, vol. 101, no. 10, pp. 102102–102104. doi: 10.1063/1.4750249.

4. Lydia R., Sreedhara Reddy P. Structural and Optical Properties of Cu2ZnSnS4 Nanoparticles for Solar Cell Applications. Journal of Nano- and Electronic Physics, 2013, vol. 5, no. 3, pp. 03017-1– 03017-4.

5. Luckert F., Hamilton D.I., Yakushev M.V., Beattie N.S., Zoppi G., Moynihan M., Forbes I., Karotki A.V., Mudryi A.V., Grossberg M., Krustok J., Martin R.W. Optical properties of high quality Cu2ZnSnSe4 thin films. Applied Physics Letters, 2011, vol. 99, no. 6, р. 062104. doi:10.1063/1.3624827.

6. Leon M., Levcenko S., Serna R., Nateprov A., Gurieva G., Merino J.M., Schorr S., Arushanov E. Spectroscopic ellipsometry study of Cu2ZnGeSe4 and Cu2ZnSiSe4 poly-crystals. Materials Chemistry and Physics, 2013, vol. 141, no. 1, pp. 58–62. doi:10.1016/j.matchemphys.2013.04.024.

7. Singh A., Singh S., Levcenko S., Unold T., Laffir F., Ryan K.M. Compositionally Tunable Photoluminescence Emission in Cu2ZnSn(S1−xSex)4 Nanocrystals. Angewandte Chemie International Edition, 2013, vol. 52, no. 35, pp. 9120–9124. doi: 10.1002/anie.201302867.

8. Todorov T.K., Tang J., Bag S., Gunawan O., Gokmen T., Zhu Y., Mitzi D.B. Beyond 11% Efficiency: Characteristics of Stateof- the-Art Cu2ZnSn(S,Se)4 Solar Cells. Advanced Energy Materials, 2013, vol. 3, no. 1, pp. 34–38. doi: 10.1002/aenm.201200348.

9. Sheleg A.U., Hurtavy V.G., Mudryi A.V., Zhivulko V.D., Valakh M.Y., Yuhimchuk V.A., Babichuk I.S., Xie H., Saucedo E. Crystallographic and Optical Characteristics of Thin Films of Cu2ZnSn(SxSe1–x)4 Solid Solutions. Journal of Applied Spectroscopy, 2014, vol. 81, no. 5, pp. 776–781. doi:10.1007/s10812-014-0005-8.

10. Sheleg A.U., Hurtavy V.G., Mudryi A.V., Valakh M.Y., Yukhymchuk V.O., Babichuk I.S., Leon M., Caballero R. Determination of the structural and optical characteristics of Cu2ZnSnS4 semiconductor thin films. Semiconductors, 2014, vol. 48, no. 10, pp. 1296–1302. doi:10.1134/S1063782614100273.

11. Sheleg A.U., Hurtavy V.G., Chumak V.A. Synthesis and X-ray diffraction study of Cu2ZnSn(SxSe1-x)4 solid solutions. Crystallography Reports, 2015, vol. 60, no. 5, pp. 758–762. doi:10.1134/S1063774515040203.

12. Wang W., Winkler M.T., Gunawan O., Gokmen T., Todorov T.K., Zhu Y., Mitzi D.B. Device characteristics of CZTSS e thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, vol. 4, no. 7, pp. 36–45. doi: 10.1002/aenm.201301465.

13. Peshikov E.V. The Radiation Effects in Semiconductors. 2nd ed. Tashkent, Fan Publ., 1986. 138 p. (in Russian)


Review

Views: 1342


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)