Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

APPROXIMATE COMPUTATION OF INTEGRALS WITH THE SINGULARITIES ON INTEGRATION INTERVAL ENDS

About the Author

V. D. Dirvuk
Yanka Kupala State University of Grodno, Grodno
Russian Federation
Senior Lecturer, Department of System Programming and Computer Security, Faculty of Mathematics and Informatics


References

1. Rusak V.N. On interpolation by rational functions with fixed poles. Doklady Akademii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1962, vol. 6, no. 9, pp. 548–550. (In Russian).

2. Rovba E.A. Quadrature formulae of interpolation-rational type. Doklady Natsionalnoi Akademii Nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 1996, vol. 40, no. 3, pp. 42–46. (In Russian).

3. Krylov V.I. Approximate Calculation of Integrals. Moscow, Nauka Publ., 1967. 500 р. (In Russian).

4. Dirvuk E.V., Smotritskii K.A. Rational Radau-type quadrature formulas. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika [Vestnik BSU. Series 1. Physics. Mathematics. Informatics], 2014, no. 1, pp. 87–91. (in Russian).

5. Dirvuk E.V. Radau-type quadrature formula for the orthogonal system of rational functions. Vesnіk Grodzenskaga dzyarzhaўnaga ўnіversіteta іmya Yankі Kupaly. Seriya 2. Matematyka. Fіzіka. Іnfarmatyka, vylіchal’naya tekhnіka і kіravanne [Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Сomputer Technology and its Сontrol], 2014, no. 2 (173), pp. 20–26. (in Russian).

6. Rovba E.A., Dirvuk E.V. Rational quasi-interpolation Hermite – Fej´er. Izvestiia Natsionalnoi akademii nauk Belarusi. Ser. fiziko-matematicheskikh nauk [Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series], 2014, no. 3, pp. 33–37. (in Russian).

7. Rouba Y., Smatrytski K., Dirvuk Y. Rational quasi-Hermite-Fejer-type interpolation and Lobatto-type quadrature formula with Chebyshev-Markov nodes. Jaen Journal on Approximation, 2015, vol. 7, no. 2, pp. 291–308.

8. Ranga A.Sri. Another quadrature rule of highest algebraic degree of precision. Numerische Mathematik, 1994, vol. 68, no. 2, pp. 283–294. doi: 10.1007/s002110050062

9. Van Deun J., Bultheel A., Vera P.G. On computing rational Gauss-Chebyshev quadrature formulas. Mathematics of Computation, 2006, vol. 75, no. 253, pp. 307–326. doi: 10.1090/s0025-5718-05-01774-6

10. Gradshteyn I.S., Ryzhik I.M. Tables of integrals, series and products. Nuclear Physics A, 1967, vol. 91, no. 3, pp. 698. doi: 10.1016/0375-9474(67)90589-1

11. Gautschi W., Li S. Gauss–Radau and Gauss–Lobatto quadratures with double end points. Journal of Computational and Applied Mathematics, 1991, vol. 34, no. 3, pp. 343–360. doi: 10.1016/0377-0427(91)90094-Z

12. Van Deun J., Bultheel A.A quadrature formula based on Chebyshev rational functions. IMA Journal of Numerical Analysis, 2006, vol. 26, no 4, pp. 641–656. doi: 10.1093/imanum/drl009.


Review

Views: 687


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)