РЕШЕНИЕ СМЕШАННЫХ ЗАДАЧ МЕТОДОМ ХАРАКТЕРИСТИК ДЛЯ ВОЛНОВОГО УРАВНЕНИЯ С ИНТЕГРАЛЬНЫМ УСЛОВИЕМ
Аннотация
В одномерном случае для волнового уравнения рассматривается смешанная задача с одним интегральным условием и граничным условием типа Дирихле на правой границе области. Показывается, что при определенных условиях гладкости на заданные функции для существования и единственности классического решения поставленной смешанной задачи необходимо и достаточно выполнения условий согласования на исходные функции. При ее анализе используется метод характеристик, который сводится к построению решения задачи в подобластях, полученных из исходной области при разбиении последней характеристическими прямыми. В каждой из указанных подобластей с помощью начальных, а также интегрального и граничного условий строится решение поставленной задачи, при этом в некоторых подобластях оно сводится к интегральному уравнению Вольтерры второго рода, для которого справедливы теоремы о корректной разрешимости. Условия согласования выводятся при приравнивании значений решения и его производных до второго порядка включительно на характеристиках. Данные результаты позволяют построить как аналитическое решение исходной задачи, если удается найти решение уравнения Вольтерры второго рода в явном виде, так и приближенное решение задачи с помощью численных методов. Однако при построении приближенного решения следует вводить дополнительные условия сопряжения решения или его производных на характеристиках.
Об авторе
И. И. СтолярчукБеларусь
магистр физико-математических наук, аспирант кафедры математической кибернетики механико-математического факультета
Список литературы
1. Дмитриев, В. Б. Нелокальная задача с интегральными условиями для волнового уравнения / В. Б. Дмитриев // Вестн. СамГУ. Естественнонауч. сер. – 2006. – № 2 (42). С. 15–26. 2. Пулькина, Л. С. Нелокальная задача с интегральными условиями для гиперболического уравнения в характеристическом прямоугольнике / Л. С. Пулькина, О. М. Кечина // Вестн. СамГУ. Естественнонауч. сер. – 2005. – № 2 (36). – С. 1–9.
2. Корзюк, В. И. Решение задачи Коши гиперболического уравнения для однородного дифференциального оператора в случае двух независимых перменных / В. И. Корзюк, И. С. Козловская // Докл. Нац. акад. наук Беларуси. – 2011. – Т. 55, № 5. – С. 9–13.
3. Корзюк, В. И. Классическое решение первой смешанной задачи для уравнения Клейна – Гордона – Фока в полуполосе / В. И. Корзюк, И. И. Столярчук // Дифференц. уравнения. – 2014. – Т. 50, № 8. – С. 1108–1117.
4. Корзюк, В. И. Классическое решение первой смешанной задачи для уравнения Клейна – Гордона – Фока в криволинейной полуполосе / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2014. – Т. 58, № 3. – С. 9–15.
5. Березанский, Ю. М. Функциональный анализ / Ю. М. Березанский, Г. Ф. Ус, З. Г. Шефтель. – Киев: Высш. шк., 1990. – 600 с.
6. Корзюк, В. И. Уравнения математической физики / В. И. Корзюк. – Минск: БГУ, 2008. – 433 с.