EXISTENCE OF MEASURABLE ADAPTED SELECTORS OF SET-VALUED FUNCTIONS
Abstract
About the Authors
A. A. LevakovBelarus
D. Sc. (Physics and Mathematics), Professor, Professor of the Department of Higher Mathematics
Y. B. Zadvorny
Belarus
Postgraduate
References
1. Himmelberg C.H. Measurable Relations. Fundamenta Mathematicae, 1975, vol. 87, no.1, pp. 53–72.
2. Filippov A.F. On some issues of optimal regulation theory. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1959, no. 2, pp. 25–32. (In Russian).
3. Kuratowski K, Ryll-Nardzewski C. A general theorem on selectors. Bulletin of the Polish Academy of Sciences, 1965, vol. 13, pp. 397–403.
4. Castaing C. Sur les multi-applications mesurables. Revue française d’informatique et de recherche opérationnelle, 1967, vol. 1, no. 1, pp. 91–126. Doi: 10.1051/m2an/1967010100911
5. Castaing C., Valadier M. Convex analysis and measurable multifunctions. Berlin, Springer Verlag, 1977. 286 p. Doi: 10.1007/bfb0087685
6. Ioffe A.D., Tikhomirov V.M. Theory of extremal problems. Moscow, Nauka Publ., 1974. 480 p. (In Russian).
7. Tolstonogov A.A. Differential inclusions in Banach space. Novosibirsk, Nauka Publ., 1986. 296 p. (In Russian).
8. Aubin J.-P., Frankowska H. Set-Valued Analysis. Boston, Birkhauser, 2009. 460 p. Doi: 10.1007/978-0-8176-4848-0
9. Kisielewisz M. Differential Inclusions and Optimal Control. Warszawa, PWN-Pol. sci. publ.; Dordrecht etc., Kluwer acad. publ., 1991. 240 p. (In Poland).
10. Hu Sh., Papageorgiou N.S. Handbook of Multivalued Analysis. Vol. 1, Theory. Dordrecht etc, Kluwer Acad. Publ, 1997.
11. Borisovich Yu.G., Gel’man B.D., Myshkis A.D., Obukhovskii V.V. An Introduction to Multifunctions and Differential Inclusions Theory. Moscow, Komkniga Publ., 2005. 214 p. (In Russian).
12. Levakov A.A. Stochastic Differential Equations. Minsk, Belarusian State University, 2014. 231 p. (In Russian).
13. Vas’kovskii М.М. Existence of β-martingale solutions of stochastic evolution functional equations of parabolic type with measurable locally bounded coefficients. Differential Equations, 2012, vol. 48, no. 8, pp. 1065–1080. Doi: 10.1134/ s0012266112080022