TO THE THEORY OF HERMITE – BIRKHOFF INTERPOLATION OF NONLINEAR ORDINARY DIFFERENTIAL OPERATORS
Abstract
About the Authors
L. A. YanovichBelarus
Corresponding Member, D. Sc. (Physics and Mathematics), Professor, Chief Researcher
M. V. Ignatenko
Belarus
Ph. D. (Physics and Mathematics), Associate Professor, Associate Professor of Web-Technologies and Computer Simulation De partment
References
1. Mysovskikh I. P. Lectures on numerical methods. St. Petersburg, Publishing House of St. Petersburg University, 1998. 470 p. (in Russian).
2. Turetskii A. Kh. The theory of interpolation in problems. Minsk, Vysheishaya shkola, 1968. 317 p. (in Russian).
3. Shi Y. G. Theory of Birkhoff Interpolation. New York, Nova Science Publishers, 2003. 253 р.
4. Nazarzadeh A., Rahsepar Fard KH., Mahmoodi A. Another case of incidence matrix for bivariate Birkhoff interpolation. Zhurnal obchislyuval'noї ta prikladnoї matematiki = Journal of Computational and Applied Mathematics, 2016, no. 2 (122), рр. 55–70.
5. Zhao T. G., Li Y. J. On Two Birkhoff-Type Interpolations with First- and Second-Order Derivative. Journal of Applied Mathematics and Physics, 2016, no. 4, рр. 1269–1274. Doi: 10.4236/jamp.2016.47133
6. Yanovich L. A., Doroshko V. V. Generalized interpolation problem of Abel – Goncharov. Vestnik fonda fundamental'nykh issledovanii [Vestnik of the Foundation for Fundamental Research], 1999, vol. 4, pp. 34–44. (in Russian).
7. Yanovich L. A., Ignatenko M. V. Interpolation operator polynomials of Hermite – Birkhoff in the space of smooth functions. Doklady Natsional'noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2009, vol. 53, no. 5, pp. 15–21. (in Russian).
8. Yanovich L. A., Ignatenko M. V. A special case of the Hermite – Birkhoff interpolation problem for operators in the space of smooth functions. Aktual'nye problemy analiza. Sbornik nauchnykh trudov [Actual problems of analysis Collection of Scientific Papers]. Grodno, Grodno State University, 2009, pp. 198–215. (in Russian).
9. Khudyakov A. P., Trofimuk A. A. The Hermite – Birkhoff interpolation formulas for algebraic and trigonometric systems of functions with one special node. Vestsі Natsyyanal'nai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series], 2017, no. 1, pp. 14–28. (in Russian).
10. Yanovich L. A., Ignatenko M. V. Generalized interpolation problem of Hermite – Birkhoff for operators. Analiticheskie metody analiza i differentsial'nykh uravnenii: Sbornik nauchnykh trudov 5-i mezhdunarodnoi konferentsii [Analytical methods of analysis and differential equations: Collection of Scientific Papers of the 5th International Conference]. Minsk, Institute of Mathematics of the National Academy of Sciences of Belarus, 2010, vol. 1, pp. 140–147. (in Russian).
11. Yanovich L. A., Doroshko V. V. Formulas of operator interpolation based on interpolation polynomials for scalar functions. Vychislitel'naya matematika i matematicheskie problemy mekhaniki: Trudy Ukrainskogo matematicheskogo kongressa [Computational Mathematics and Mathematical Problems in Mechanics: Proceedings of the Ukrainian Mathematical Congress]. Kiev, 2002, pp. 137–145. (in Russian).
12. Yanovich L. A., Ignatenko M. V. On a class of interpolation polynomials for nonlinear ordinary differential operators. Matematicheskoe Modelirovanie [Mathematical Models and Computer Simulations], 2014, vol. 26, no. 11, pp. 90–96.
13. Yanovich L. A., Ignatenko M. V. On a class of Hermite – Birkhoff operator interpolation formulas in the space of differentiable functions. Vestsі Natsyyanal'nai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series], 2005, no. 2, p. 11–16. (in Russian).
14. Evgrafov M. A. Abel – Goncharov interpolation problem. Мoscow, State Publishing House of Technical and Theoretical Literature, 1954. 127 p. (in Russian).
15. Makarov V. L., Khlobystov V. V., Yanovich L. A. Methods of Operator Interpolation. Pratsі іnstitutu matematiki NAN Ukraїni [Institute of Mathematics of the National Academy of Sciences of Ukraine], Kiev, 2010, vol. 83, pp. 1–517.