HOMOGENEOUS RIEMANN BOUN DARY VALUE PROBLEM WITH MEROMORPHIC COEFFICIEN TS FOR INFINITELY CONNECTED DOMAIN
Abstract
About the Author
M. M. YukhimukBelarus
Senior Lecturer of the Department of Higher Mathematics
References
1. Akhiezer N. I. On some inversion formulas for singular integrals. Izvestiya AN SSSR. Seriya matematicheskaya [Mathematics of the USSR - Izvestiya], 1945, vol. 9, pp. 275–290. (in Russian).
2. Govorov N. V. Riemann's boundary problem with infinite index. Moscow, Nauka Publ., 1986. 240 p. (in Russian).
3. Gakhov F. D. Boundary value problems. Moscow, Nauka Publ., 1977. 640 p. (in Russian).
4. Mityushev V. V., Pesetskaya E. V., Rogosin S. V. Analytical Methods for Heat Conduction in Composites and Porous Media. Öchsner A., Murch G., de Lemos M. (eds.). Cellular and Porous Materials: Thermal Properties Simulation and Prediction. Amsterdam, Wiley-VCH, 2007, pp. 124–167. Doi: 10.1002/9783527621408.ch5
5. Chibrikova L. I. Boundary value problems for a rectangle. Uchenye zapiski Kazanskogo universiteta [Bulletin of the Kazan University], 1964, vol. 123, book 10, pp. 15–39. (in Russian).
6. Aksent'eva E. P., Salekhova I. G. Riemann problem in a case of doubly periodic arrangements of arches. I. Uchenye zapiski Kazanskogo universiteta [Bulletin of the Kazan University], 2008, vol. 150, book 4, pp. 66–79. (in Russian).
7. Zverovich E. I. Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces. Russian Mathematical Surveys, 1971, vol. 26, no. 1, pp. 117–192. Doi: 10.1070/RM1971v026n01ABEH003811
8. Zverovich E. I. The Behnke – Stein kernel and closed-form solution of Riemann’s boundary value problem on the torus. Doklady Akademii nauk SSSR [Proceedings of the Academy of Sciences of the USSR], 1969, vol. 188, no. 1, pp. 27–30. (in Russian).
9. Degtyarenko N. A. A doubly periodic meromorphic analogue of the Cauchy kernel and some of its applications. Izvestiya vysshikh uchebnykh zavedenii. Matematika [Russian Mathematics], 1999, no. 8, pp. 11–19. (in Russian).
10. Akhiezer N. I. Elements of theory of elliptic functions. Moscow, Nauka Publ., 1970. 304 p. (in Russian).