COX NONRELATIVISTIC PARTICLE OF INTRINSIC STRUCTURE IN THE ELECTRIC FIELD: ANALYSIS IN THE LOBACHEVSKY SPACE
Abstract
About the Authors
O. V. VekoBelarus
Postgraduate
E. M. Ovsiyuk
Belarus
Ph. D. (Physics and Mathematics), Associate Professor
V. M. Red’kov
Belarus
D. Sc. (Physics and Mathematics), Chief Researcher, Center of Theoretical Physics
References
1. Cox W. Higher-rank representations for zero-spin field theories. Journal of Physics A: Mathematical and General, 1982, vol. 15, no. 2, pp. 627–635. Doi: 10.1088/0305-4470/15/2/029
2. Pletyukhov V. A., Red'kov V. M., Strazhev V. I. Relativistic wave equations and intrinsic degrees of freedom. Minsk, Belaruskaya navuka, 2015. 328 p. (in Russian).
3. Schweber S. S. An Introduction to Relativistic Quantum Field Theory. New York, Harper&Row, Publishers, Inc., 1961. 905 p.
4. Ovsiyuk E. M., Veko O. V., Kazmerchuk K. V. Scalar particle with intrinsic structure in electromagnetic field in curved space. Problemy fiziki, matematiki i tekhniki [Problems of Physics, Mathematics and Technics], 2014, no. 3 (20), pp. 32–36. (in Russian).
5. Veko O. V., Kazmerchuk K. V., Kisel V. V., Ovsiyuk E. M., Red’kov V. M. Quantum mechanical scalar particle with intrinsic structure in external magnetic and electric fields: influence of geometrical background. Nonlinear Phenomena in Complex Systems, 2014, vol. 17, no. 4, pp. 464–466.
6. Ovsiyuk E. M. Spin zero Cox’s particle with an intrinsic structure: general analysis in external electromagnetic and gravitational fields. Ukrainian Journal of Physics, 2015, vol. 60, no. 6, pp. 485–496. Doi: 10.15407/ujpe60.06.0485
7. Veko O. V. Cox’s particle in magnetic and electric fields on the background of hyperbolic Lobachevsky geometry. Kurochkin Yu., Red’kov V. (eds.) Proceedings of the IX International Conference «Methods of non-Euclidean geometry in physics and mathematics», Bolyai – Gauss – Lobachevsky-9 (BGL-9), Minsk, 27–30 November 2015. Minsk, 2015, pp. 284–294.
8. Veko O. V. Cox’s particle in magnetic and electric fields on the background of hyperbolic Lobachevsky geometry. Nonlinear Phenomena in Complex Systems, 2016, vol. 19, no. 1, pp. 50–61.
9. Heun K. Zur Theorie der Riemann’schen Functionen Zweiter Ordnung mit Verzweigungspunkte. Mathematische Annalen, 1989, vol. 33, pp. 161–179. Doi:10.1007/bf01443849
10. Ronveaux A. Heun’s Differential Equation. Oxford, Oxford University Press, 1995. 380 p.
11. Slavyanov S. Yu., Lay W. Special Functions. A Unified Theory Based on Singularities. Oxford, Oxford University Press, 2000. 312 p.