Preview

Известия Национальной академии наук Беларуси. Серия физико-математических наук

Пашыраны пошук

СПЕКТРАЛЬНАЯ СОГЛАСОВАННОСТЬ РАЗНОСТНЫХ СХЕМ ДЛЯ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

Анатацыя

Исследована спектральная согласованность схемы с весами для уравнения теплопроводности. Поcредством аналогии между частотными характеристиками уравнения теплопроводности и фильтра низкой частоты найдено эквивалентное представление разностной схемы в виде пары рекурсивных цифровых фильтров первого порядка с компенсированной групповой задержкой. На основе спектральной согласованности получены оценки точности дискретной модели фильтрации. Найдены оптимальные значения коэффициентов фильтра, обеспечивающие минимальную среднеквадратичную погрешность его частотной характеристики в заданном спектральном диапазоне. Примечательно, что оптимальное соотношение пространственно-временных шагов сетки в схеме с весами совпадает с соотношением, которое обеспечивает схема фильтрации с коэффициентами, отвечающими минимальной средне-квадратичной погрешности частотной характеристики в заданном спектральном диапазоне. Показано, что оптимизированная модель фильтрации обеспечивает многократное уменьшение среднеквадратичной погрешности частотной характеристики (в 5–7 раз) по сравнению с разностной схемой 6-го порядка точности. Значение шага по времени в оптимизированной схеме фильтрации несколько больше, по сравнению с его значением в разностной схеме 6-го порядка точности и стремится к последнему, когда диапазон наилучшего спектрального разрешения стремится к нулю. Полученные результаты могут быть использованы для оптимизации соотношения шагов сетки в разностных методах для уравнения теплопроводности.

 

 

Аб аўтарах

В. Волков
Белорусский государственный университет
Беларусь


А. Гуревский
Белорусский государственный университет
Беларусь


Спіс літаратуры

1. Lele, S. K. Compact finite difference schemes with spectral-like resolution / S. K. Lele // J. Comput. Phys. – 1992. – Vol. 103, №. 1. – P. 16–42.

2. Tam, C. K. W. Dispersion-relation-preserving finite difference schemes for computational acoustics / C. K. W. Tam, J. C. Webb // J. Comput. Phys. – 1993. – Vol. 107, №. 2. – P. 262–281.

3. Волков, В. М. Консервативные разностные схемы с улучшенными дисперсионными свойствами для нелинейных уравнений шредингеровского типа / В. М. Волков // Дифференц. уравнения. – 1993. – т. 29, №. 7. – С. 1156–1162.

4. Сергиенко, а. Г. Цифровая обработка сигналов / А. Г. Сергиенко. – СПб.: БХВ-Петербург, 2011. – 768 с.

5. Improved split-step method for efficient fiber simulations / M. Plura [et al.] // Electron. Lett. – 2001. – Vol. 37, № 5. – P. 286–287.

6. Волков, В. М. Метод дробных шагов с использованием рекурсивных цифровых фильтров для решения нелинейных уравнений Шредингера / В. М. Волков, А. С. Циунчик // Докл. Нац. акад. наук Беларуси. – 2009. – Т. 53, № 5. – С. 22–25.

7. Волков, В. М. Оптимизация компактных разностных схем спектрального разрешения для нестационарного уравнения Шредингера на основе методов цифровой обработки сигналов / В. М. Волков, А. Н. Гуревский, И. В. Жукова / Вестн. БГУ. Сер. 1, Физика. Математика. Информатика. – 2015. – № 3. – С. 84–89.

8. Самарский, а. а. теория разностных схем / А. А. Самарский. – М.: Наука, 1989. – 616 с.

9. Саульев, В. К. О методах повышения точности и двухсторонних приближениях к решению параболических уравнений / В. К. Саульев // Докл. АН СССР. – 1958. – т. 118. – С. 1088.


##reviewer.review.form##

Праглядаў: 1062


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)