Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

FIRST-ORDER PHASE TRANSITION DYNAMICS IN THE FINSLER CONFIGURATION SPACE OF THE LANGMUIR MONOLAYER

Abstract

In the article, the Euler – Lagrange equations, which describe first-order phase transition dynamics in a con-figuration Finsler space of a Langmuir monolayer, have been obtained. An approximate method for analysis of the equations has been developed. The method is based on a combination of analytical and numerical calculations using the zero-order approximation with a fixed relaxation time and the more exact approximation with a model distribution of relaxation times. Heterogeneous dynamics of the system has been demonstrated. Such dynamics corresponds to the monolayer metastable state with different relaxation times of phase nuclei. The relaxation time distribution has a maximum and a maximum height depends on a monolayer compression rate. The increase of the maximum height at enhancement of a compression rate is accompanied by an explicit plateau of the isotherm that displays the characteristic behavior of the monolayer isotherm in the region of phase transition. The dynamics of a two-dimensional phase transition has been numerically studied at the compression rate as being sufficiently low, and a comparative analysis of the system behavior at two approximations (the approximation of fixed relaxation time and the approximation of model distribution of relaxation times) has been made. It has been found that the presence of phase nuclei with different relaxation times causes an effective centrifugal force, the magnitude of which depends on the gradient of electrocapillary forces.

About the Authors

N. G. Krylova
Belarusian State University
Belarus

Researcher of the Laboratory of Dielectric Spectroscopy of Heterogeneous Systems, Physics Facul ty



H. V. Grushevskaya
Belarusian State University
Belarus

Leading Researcher of the Laboratory of Dielectric Spectroscopy of Heterogeneous Systems, Physics Faculty



V. M. Red’kov
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

D. Sc. (Physics and Mathematics), Chief Researcher of the Center of Theoretical Physics



References

1. Moehwald H., Brezesinski G. From Langmuir monolayers to multilayer films. Langmuir, 2016, vol. 32, no. 41, pp. 10445−10458. Doi: 10.1021/acs.langmuir.6b02518

2. Acharya S., Hill J. P., Ariga K. Soft Langmuir – Blodgett technique for hard nanomaterials. Advanced Materials, 2009, vol. 21, no. 29, pp. 2959–2981. Doi: 10.1002/adma.200802648

3. Blinov L. M. Langmuir films. Uspekhi Fizicheskih Nauk, 1988, vol. 155, no. 7, pp. 443–480 (in Russian). Doi: 10.3367/ ufnr.0155.198807c.0443

4. Andelman D., Brochard F., Knobler C., Rondelez F. Structures and phase transitions in Langmuir monolayers. Gel-bart W. M., Ben-Shaul A., Roux D. (eds.). Micelles, Membranes, Microemulsions, and Monolayers. New York, Springer, 1994, pp. 559–602. Doi: 10.1007/978-1-4613-8389-5_12

5. Anderson P. W. Physics: The opening to complexity. Proceedings of the National Academy of Sciences, 1995, vol. 92, no. 15, pp. 6653–6654. Doi: 10.1073/pnas.92.15.6653

6. Mezard M., Parisi G., Virasoro M. A. Spin Glass Theory and Beyond. Singapore, World Scientific Lecture Notes in Physics, 1986. 476 p. Doi: 10.1142/0271

7. Ostilli, M., Bianconi G. Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition. Physical Review E, 2015, vol. 91, no. 4, pp. 042136. Doi: 10.1103/physreve.91.042136

8. Avrami M. Kinetics of phase change. I General Theory. Journal of Chemical Physics, 1939, vol. 7, pp. 1103–1112. Doi:10.1063/1.1750380

9. Avrami M. Kinetics of phase change. II Transformation Time Relations for Random Distribution of Nuclei. Journal of Chemical Physics, 1940, vol. 8, pp. 212‒224. Doi: 10.1063/1.1750631

10. Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. Journal of Chemical Physics, 1941, vol. 9, pp. 177–184. Doi: 10.1063/1.1750872

11. Johnson W., Mehl R. F. Reaction kinetics in processes of nucleation and growth. Trans. AIME, 1939, vol. 135, pp. 416–442.

12. Kolmogorov A. N. To statistical theory of metal crystallization. Izvestiya AN SSSR. Seriya matematicheskaya [Izvestiya: Mathematics], 1937, vol. 1, no. 3, pp. 355–359 (in Russian).

13. Shur V. Ya., Gruverman A. L., Rumyantsev E. L. Dynamics of domain structure in uniaxial ferroelectrics. Ferro-electrics, 1990, vol. 111, no. 1, pp. 123–131. Doi: 10.1080/00150199008224389

14. Shur V. Ya. Fast polarization reversal process: evolution of ferroelectric domain structure in thin films. Paz de Araujo C. A., Scott J. F., Taylor G. W. (eds.). Ferroelectric Thin Films: Synthesis and Basic Propeties. Ferroelectricity and Related Phenomena Ser. Vol. 10, Ch. 6. Gordon & Breach Sci. Publ., 1996, pp. 153−192.

15. Gutierrez-Campos A., Diaz-Leines G., Castillo R. Domain growth, pattern formation, and morphology transitions in Langmuir monolayers. A new growth instability. The Journal of Physical Chemistry B, 2010, vol. 114, no. 15, pp. 5034–5046. Doi: 10.1021/jp910344h

16. Datta A., Kmetko J., Yu C.-J., A. G. Richter C.-J., Chung K.-S., Bai J.-M., Dutta P. pH-Dependent appearance of chiral structure in a Langmuir monolayer. The Journal of Physical Chemistry B, 2000, vol. 104, no. 24, pp. 5797–5802. Doi: 10.1021/jp0006375

17. Vollhardt D., Fainerman V. B. Kinetics of Two-Dimensional Phase Transition of Langmuir Monolayers. The Journal of Physical Chemistry B, 2002, vol. 106, no. 2, pp. 345–351. Doi: 10.1021/jp012798u

18. Grushevskii V. V., Krylova H. V. The thermodynamics of phase states in Langmuir-Blodgett monolayers. Nizkorazmernye sistemy-2: Fiziko-khimiya elementov i sistem s nizkorazmernym strukturirovaniem (poluchenie, diagnostika, primenenie novykh materialov i struktur): sb. nauch. rabot [Low-dimensional systems-2. Physical chemistry of elements and systems with low-dimensional structuring (acquisition, diagnostics, application of new materials and structures): a collection of scientific papers]. Grodno, Grodno State University, Is. 4, 2005, pp. 30–36 (in Russian).

19. Nandi N., Vollhardt D. Anomalous temperature dependence of domain shape in Langmuir monolayers: Role of dipolar interaction. The Journal of Physical Chemistry B, 2004, vol. 108, no. 49, pp. 18793–18795. Doi: 10.1021/jp0461697

20. Lopez J. M., Vogel M. J., Hirsa A. H. Influence of coexisting phases on the surface dilatational viscosity of Langmuir monolayers. Physical Review E, 2004, vol. 70, no. 5, p. 056308. Doi: 10.1103/physreve.70.056308

21. Arriaga L. R., Lopez-Montero I., Ignes-Mullol J., Monroy F. Domain-growth kinetic origin of nonhorizontal phase coexistence plateaux in Langmuir monolayers: Compression rigidity of a raft-like lipid distribution. The Journal of Physical Chemistry B, 2010, vol. 114, no. 13, pp. 4509–4520. Doi: 10.1021/jp9118953

22. Ruckenstein E., Li B. Surface equation of state for insoluble surfactant monolayers at the air/water interface. The Journal of Physical Chemistry B, 1998, vol. 102, no. 6, pp. 981–989. Doi: 10.1021/jp972748i

23. Balan, V., Grushevskaya H. V., Krylova N. G., Neagu M. Multiple-relaxation-time Finsler-Lagrange dynamics in a сom-pressed Langmuir monolayer. Nonlinear Phenomena in Complex Systems, 2016, vol. 19, no. 3, pp. 223–253.

24. Kaganer V. M., Möhwald H., Dutta P. Structure and phase transitions in Langmuir monolayers. Reviews of Modern Physics, 1999, vol. 71, no. 3, pp. 779–819.

25. Grushevskaya G. V., Krylova N. G. Finsler geometry effects in physics of surface phenomenon: the case of mono layer system. Giperkompleksnye chisla v geometrii i fizike = Hypercomplex numbers in geometry and physics, 2011, vol. 8, pp. 128–146 (in Russian).

26. Balan V., Grushevskaya H., Krylova N. Finsler geometry approach to thermodynamics of first order phase transitions in monolayers. Differential Geometry – Dynamical Systems, 2015, vol. 17, pp. 24–31.

27. Bao D., Chern S., Shen Z. An Introduction to Riemann-Finsler Geometry. Berlin, Springer, 2000. 435 p. Doi: 10.1007/978-1-4612-1268-3

28. Antonelli P. L., Miron R. (eds.). Lagrange and Finsler geometry: Application to Physics and Biology. Springer, 1996. Doi: 10.1007/978-94-015-8650-4

29. Grushevskaya H. V., Krylov G. G., Krylova N. G., Lipnevich I. V. Modeling of the behavior and statistical analysis of compressibility in the process of Langmuir monolayer structurization. Journal of Physics: Conference Series, 2015, vol. 643, p. 012015. Doi: 10.1088/1742-6596/643/1/012015

30. Vollhardt D., Fainerman V. B. Progress in characterization of Langmuir monolayers by consideration of compressibility. Advances in Colloid and Interface Science, 2006, vol. 127, pp. 83–97. Doi: 10.1016/j.cis.2006.11.006

31. Balan V., Neagu M. Jet singele-time Lagrange geometry and its application. Wiley, 2011. 194 p. Doi: 10.1002/9781118143759

32. Anishchenko V. S. Complex oscillations in simple systems. Moskow, Nauka Publ., 1990. 312 p. (in Russian).


Review

Views: 655


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)