ANALYSIS OF THE ELECTRONIC STRUCTURE OF AN ELECTRICALLY INDUCED QUANTUM DOT IN THE EXTERNAL MAGNETIC FIELD
Abstract
Numerical modeling of the electronic structure of a quantum dot, induced by an electric field of a nanosized disc-shaped gate, is carried out in the presence of external magnetic field. The dependences of an electronic energy spectrum on electric and magnetic fields are calculated using the finite element method. It has been found that a series of anti-crossing points for electronic levels takes place at relatively small magnetic fields. The existence of groups of close-energy levels (electronic shells) has been found. It has been shown that despite the essential distinction of the gate potential from the parabolic one, a model of a near-surface anisotropic harmonic oscillator can be effectively used for a qualitative description of the electronic structure of the electrically induced quantum dot. With the use of this model, the evolution of energy spectrum and wave function structure with magnetic and electric fields is described. In particular, the anisotropic oscillator model allows to predict anti-crossing points of electronic levels in external fields, as well as quasi-degeneracy of states having different values of the angular momentum projection.
About the Authors
E. A. LevchukBelarus
Postgraduate
L. F. Makarenko
Belarus
Ph. D. (Physics and Mathe ma-tics), Assistant Professor, Assistant Professor of the Mathematical Modeling and Control Department
References
1. Kastner M. A. Artificial atoms. Physics today, 1993, vol. 46, no. 1, pp. 24–31. Doi: 10.1063/1.43770
2. Ashoori R. C. Electrons in artificial atoms. Nature, 1996, vol. 379, no. 6564, pp. 413–419. Doi: 10.1038/379413a0
3. Tarucha S., Austing D. G., Honda T., Van der Hage R. J., Kouwenhoven L. P. Shell filling and spin effects in a few electron quantum dot. Physical Review Letters, 1996, vol. 77, no. 17, pp. 3613–3616. Doi: 10.1103/physrevlett.77.3613
4. Wu J., Chen S., Seeds. A., Liu H. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. Journal of Physics D: Applied Physics, 2015, vol. 48, no. 36, pp. 363001. Doi: 10.1088/0022-3727/48/36/363001
5. Zwanenburg F. A., Dzurak A. S., Morello A., Simmons M. Y., Hollenberg L. C., Klimeck G., Rogge S., Coppersmith S. N., Eriksson M. A. Silicon quantum electronics. Reviews of Modern Physics, 2013, vol. 85, no. 3, pp. 961–1019. Doi: 10.1103/rev-modphys.85.961
6. Loss D., DiVincenzo D. P. Quantum computation with quantum dots. Physical Review A, 1998, vol. 57, no. 1, pp. 120– 126. Doi: 10.1103/physreva.57.120
7. Reimann S. M., Manninen M. Electronic structure of quantum dots. Reviews of Modern Physics, 2002, vol. 74, pp. 1283–1342. Doi: 10.1103/revmodphys.74.1283
8. Ciftja O. Understanding electronic systems in semiconductor quantum dots. Physica Scripta, 2013, vol. 88, p. 058302. Doi: 10.1088/0031-8949/88/05/058302
9. Flügge S. Practical Quantum Mechanics. Vol. 1. Springer-Verlag, 1971, 286 p. Doi: 10.1007/978-3-642-61995-3
10. Fujito M., Natori A., Yasunaga H. Many-electron ground states in anisotropic parabolic quantum dots. Physical Review B, 1996, vol. 53, no. 15, pp. 9952–9958. Doi: 10.1103/physrevb.53.9952
11. Willatzen M., Lok C. Lew Yan Voon. Separable Boundary-Value Problems in Physics. Wiley-VCH, 2011, 377 p. Doi: 10.1002/9783527634927
12. Lok C. Lew Yan Voon, Willatzen M. Confined states in lens-shaped quantum dots. Journal of Physics: Condensed Matter, 2002, vol. 14, pp. 13667–13678. Doi: 10.1088/0953-8984/14/49/321
13. Kumar A., Laux S. E., Stern F. Electron states in a GaAs quantum dot in a magnetic field. Physical Review B, 1990, vol. 42, no. 8, pp. 5166–5175. Doi: 10.1103/physrevb.42.5166
14. Kane B. E. A silicon-based nuclear spin quantum computer. Nature (London), 1998, vol. 393, pp. 133–137. Doi: 10.1038/30156
15. Fuechsle M., Miwa J. A., Mahapatra S., Ryu H., Lee S., Warschkow O., Hollenberg L. C., Klimeck G., Simmons M. Y. Single-atom transistor. Nature nanotechnology, 2012, vol. 7, no. 4, pp. 242–246. Doi: 10.1038/nnano.2012.21
16. Petta J. R., Johnson A. C., Marcus C. M., Hanson M. P., Gossard A. C. Manipulation of a single charge in a double quantum dot. Physical Review Letters, 2004, vol. 93, no. 18, p. 186802. Doi: 10.1103/physrevlett.93.186802
17. Smit G. D. J., Rogge S., Caro J., Klapwijk T. M. Gate-induced ionization of single dopant atoms. Physical Review B, 2003, vol. 68, no. 19, p. 193302. Doi: 10.1103/physrevb.68.193302
18. Levchuk E. A., Makarenko L. F. On controlling the electronic states of shallow donors using a finite-size metal gate. Semiconductors, 2016, vol. 50, no. 1, pp. 89–96. Doi:10.1134/s1063782616010127
19. Arfken G. Mathematical Methods for Physicists. Academic Press, 2013, 985 p.
20. Smythe W. R. Static and dynamic electricity. New York, McGraw-Hill, 1989, 845 p.
21. Zimmerman M. L., Kash M. M, Kleppner D. Evidence of an approximate symmetry for hydrogen in a uniform magnetic field. Physical Review Letters, 1980, vol. 45, no. 13, pp. 1092–1094. Doi: 10.1103/physrevlett.45.1092
22. Büch H., Fuechsle M., Baker W., House M. G., Simmons M.Y. Quantum dot spectroscopy using a single phosphorus donor. Physical Review B, 2015, vol. 92, no. 23, p. 235309. Doi: 10.1103/physrevb.92.235309