INJECTION ANNEALING OF RADIATION-INDUCED INTERSTITIAL DEFECTS IN BORON DOPED SILICON CRYSTALS
Abstract
Using the same n+–p diode structures, the effect of injection of minority charge carriers on the annealing of various interstitial defects has been studied in silicon irradiated with α-particles. It has been found that the self-interstitial silicon atoms (Sii) possess the highest sensitivity to forward current injection. At a liquid nitrogen temperature and a forward current density of 10–20 mA/cm2, the time constant for Sii annealing is about a few seconds. To activate the interstitial boron atoms at Т ≤ 140 K, substantially higher direct current densities are required (≥ 100 mA/cm2). However, it has been found that the forward current injection not only enhances, but even causes the retardation of interstitial carbon annealing. It is suggested that only the reactions of interstitial atoms, characterized by a strong electron-phonon coupling, can be enhanced by recombination processes.
About the Authors
L. F. MakarenkoBelarus
Ph. D. (Physics and Mathematics), Assistant Professor
S. B. Lastovskii
Belarus
Ph. D. (Physics and Mathe ma-tics), Head of the Laboratory
H. S. Yakushevich
Belarus
Junior Researcher
M. Moll
Switzerland
Ph. D. (Physics), Pro ject Leader, EP Department
I. Pintilie
Romania
Ph. D. (Physics), Senior Researcher
References
1. Emtsev V. V., Mashovets T. V., Ryvkin S. M. (ed.). Impurities and point defects in semiconductors. Moscow, Radio i svyaz’ Publ., 1981. 248 p. (in Russian).
2. Watkins G. D. Intrinsic defects in silicon. Materials Science İn Semiconductor Processing, 2000, vol. 3, no. 4, pp. 227– 235. Doi: 10.1016/S1369-8001(00)00037-8.
3. Kimerling L. C., Asom M. T., Benton J. L., Drevinsky P. J., Caefer, C. E. Interstitial defect reactions in silicon. Materials Science Forum, 1989, vol. 38–41, pp. 141–150. Doi: 10.4028/www.scientific.net/msf.38-41.141
4. Asghar M., Iqbal M. Z., Zafar N. Study of alpha-radiation-induced deep levels in p-type silicon. Journal of Applied Physics, 1993, vol. 73, no. 9, pp. 4240–4247. Doi: 10.1063/1.352803
5. Mukashev B. N., Abdullin K. A., Gorelkinskii Y. V. Self-ınterstitials in silicon ırradiated with light ıons. Physica Status Solidi A, 1998, vol. 6, no. 1, pp. 73–85. Doi: 10.1002/(sici)1521-396x(199807)168:13.0.co;2-5
6. Makarenko L. F., Moll M, Evans-Freeman J. H., Lastovskii S. B., Murin L. I., Korshunov F. P. Kinetics of self-interstitials reactions in p-type silicon irradiated with alpha particles. Physica B: Condensed Matter, 2012, vol. 407, no. 15, pp. 3016– 3019. Doi: 10.1016/j.physb.2011.08.101
7. Troxell J. R., Watkins, G. D. Interstitial boron in silicon: A negative-U system. Physical Review B, 1980, vol. 22, no. 2, pp. 921–931. Doi: 10.1103/PhysRevB.22.921
8. Troxell J. R., Chatterjee A. P., Watkins G. D., Kimerling L. C. Recombination-enhanced migration of interstitial aluminum in silicon. Physical Review B, 1979, vol. 19 no. 10, pp. 5336–5348. Doi: 10.1103/PhysRevB.19.5336
9. Makarenko L. F., Lastovskii S. B., Yakushevich H. S., Moll M., Pintilie I. Forward current enhanced elimination of the radiation induced boron-oxygen complex in silicon n+–p diodes. Physica Status Solidi A, 2014, vol. 211, no. 11, pp. 2558– 2562. Doi: 10.1002/pssa.201431315
10. Makarenko L. F., Moll M., Korshunov F. P., Lastovski S. B. Reactions of interstitial carbon with impurities in silicon particle detectors. Journal of Applied Physics, 2007. vol. 101, no. 11, pp. 113537 (1–6). Doi: 10.1063/1.2745328
11. Kimerling L. C., Gibson W. M., Blood P. Defect states in proton-bombarded silicon at T < 300 K. Albany J. H. (ed.). Defects and radiation effects in semiconductors. London; Bristol, Institute of Physics, 1979, Ser. № 46, pp. 273–280.
12. Makarenko L. F., Lastovskii S. B., Korshunov F. P., Moll M., Pintilie I., Abrosimov N. V. Formation and annealing of boron-oxygen defects in irradiated silicon and silicon-germanium n+–p structures. AIP Conference Proceedings, 2014, vol. 1583, no. 1, pp. 123–126. Doi: 10.1063/1.4865618
13. Feklisova O. V., Yarykin N. A., Weber, J. Annealing kinetics of boron-containing centers in electron-irradiated silicon. Semiconductors, 2013, vol. 47, no. 2, pp. 228–231. Doi: 10.1134/S1063782613020085
14. Makarenko L. F., Korshunov F. P., Lastovskii S. B., Murin L. I., Moll M., Pintilie I. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon. Semiconductors, 2014, vol. 48, no. 11, pp. 1456–1462. Doi: 10.1134/S1063782614110141
15. Harris R. D., Newton J. L., Watkins G. D. Negative-U defect: Interstitial boron in silicon. Physical Review B, 1987, vol. 36, no. 2, pp. 1094–1104. Doi: 10.1103/PhysRevB.36.1094
16. Carvalho A., Jones R., Sanati M., Estreicher S. K., Coutinho J., Briddon, P. R. First-principles investigation of a bistable boron-oxygen interstitial pair in Si. Physical Review B, 2006, vol. 73, no. 24, pp. 245210 (1–7). Doi: 10.1103/ PhysRevB.73.245210
17. Jones R., Carvalho A., Goss J. P., Briddon P. R. The self-interstitial in silicon and germanium. Materials Science and Engineering: B, 2009, vol. 159–160, pp. 112–116. Doi: 10.1016/j.mseb.2008.09.013
18. Makarenko L. F. On the cross section of electron capture into the deep state of thermal U− donors in Si. Physica Status Solidi A, 1988, vol. 106, no. 2, pp. K153–K155. Doi: 10.1002/pssa.2211060248
19. Baraff G. A., Schluter M., Allan G. Theory of enhanced migration of ınterstitial aluminum in silicon. Physical Review Letters, 1983, vol. 50, no. 10, pp. 739–742. Doi: 10.1103/PhysRevLett.50.739