Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

AMPLIFIED LUMINESCENCE AND AUGER RECOMBINATION IN GaInAsSb-BASED LEDS IN THE TEMPERATURE RANGE OF 10–300 K

Abstract

The parameters for a temperature dependence of the band gap in the temperature range of 10–300 K and for a temperature dependence of spin-orbit splitting energy were obtained using the experimental emission spectra for LEDs based on Ga1–xInxAsySb1–y/AlGaAsSb heterostructures. For temperatures of 10–80 K, the rise of the emission intensity is limited by the Auger recombination process, for which the recombination energy of an electron-hole pair is transferred to a hole with its transition to the spin-orbital band. With an increase in a temperature of more than 100 K, there is a rise of the coefficient of the Auger recombination process, for which the energy released by the recombination of an electron-hole pair excites another electron in the conduction band. The sum of these processes results in quenching the LED emission with increasing temperature over 150 K.

 

 

About the Authors

Y. V. Lebiadok
SSPA “Optics, Optoelectronics and Laser Technology”
Belarus

Ph. D. (Physics and Mathematics), Head of the Laboratory of Optoelectronic Engineering



D. M. Kabanau
SSPA “Optics, Optoelectronics and Laser Technology”
Belarus

Junior Researcher of the Laboratory of Optoelectronic Engineering



References

1. Civiš S., Horká V., Šimeček T., Hulicius E., Pangrác J., Oswald J., Petříček O., Rouillard Y., Alibert C., Werner R. GaSb based lasers operating near 2.3 µm for high resolution absorbtion spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, vol. 61, no. 13–14, pp. 3066–3069. Doi: 10.1016/j.saa.2004.11.029

2. Stoyanov N. D., Zhurtanov B. E., Astakhova A. P., Imenkov A. N., Yakovlev Yu. P. High Efficient LEDs of 1.6−2.4 µm spectral range for medical diagnostics and ecological monitoring. Semiconductors, vol. 37, no. 8, pp. 971–984. Doi: 10.1134/1.1601668

3. Bogdanovich M. V., Kabanov D. M., Lebedok E. V., Shpak P. V., Ryabtsev A. G., Ryabtsev G. I., Shchemelev M. A., Andreev I. A., Kunitsyna E. V., Ivanov E. V., Yakovlev Yu. P. Measurement of the water content in oil and oil products using IR light-emitting diode–photodiode optrons. Technical Physics, 2017, vol. 62, no. 2, pp. 344–346. Doi: 10.1134/s1063784217020049

4. Whelan H. T. The NASA light-emitting diode medical program – progress in space flight and terrestrial applications. AIP Conference Proceedings, 2000, pp. 37–43. Doi: 10.1063/1.1302454

5. Lu W., Zhang T., He S. M., Zhang B., Li N., Liu S. S. Light-emitting diodes for space applications. Optical and Quantum Electronics, 2009, vol. 41, no. 11–13, pp. 883–893. Doi: 10.1007/s11082-010-9402-2

6. Vurgaftman I., Meyer J. R., Ram-Mohan L. R. Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 2001, vol. 89, no. 11, pp. 5815–5875. Doi: 10.1063/1.1368156

7. Kizhaev S. S., Molchanov S. S., Zotova N. V., Grebenshchikova E. A., Yakovlev Yu. P., Hulicius E., Simicek T., Melichar K., Pangrac J. Broken-gap heterojunction in the p-GaSb-n-InAs1−x Sbx(0≤x≤0.18) system. Technical Physics Letters, 2001, vol. 27, no. 11, pp. 964–966. Doi: 10.1134/1.1424407

8. Mikhailova M. P., Titkob A. N. Type II heterojunctions in the GaInAsSb/GaSb system. Semiconductor Science and Technology, 1994, vol. 9, no. 7, pp.1279–1295. Doi: 10.1088/0268-1242/9/7/001

9. Leroux M., Grandjean N., Beaumont B., Nataf G., Semond F., Massies J., Gibart P. Temperature quenching of photoluminescence intensities in undoped and doped GaN. Journal of Applied Physics, 1999, vol. 86, no. 7, pp. 3721–3728. Doi: 10.1063/1.371242

10. Talalaev V. G., Novikov B. V., Tsyrlin G. E., Leipner H. S. Temperature quenching of spontaneous emission in tunnel-injection nanostructures. Semiconductors, 2015, vol. 49, no. 11, pp. 1483-1492. Doi: 10.1134/s1063782615110214

11. Takeshima M. Auger recombination in InAs, GaSb, InP, and GaAs. Journal of Applied Physics, 1972, vol. 43, no. 11, pp. 4114–4119. Doi: 10.1063/1.1660882

12. Takeshima M. Green’s-function formalism of band-to-band Auger recombination in semiconductors. Correlation effect. Physical Review B, 1982, vol. 26, no. 11, pp. 917–930. Doi: 10.1103/physrevb.26.917

13. Cheetham K. J., Krier A., Marko I. P., Aldukhayel A., Sweeney S. J. Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs midinfrared light-emitting diodes. Applied Physics Letters, 2011, vol. 99, no. 14, pp. 141110. Doi: 10.1063/1.3646910

14. Takeshima M. Unified theory of the impurity and phonon scattering effects on Auger recombination in semiconductors. Physical Review B, 1982, vol. 25, no. 8, pp. 5390–5414. Doi: 10.1103/physrevb.25.5390

15. Haug A. Temperature dependence of Auger recombination in gallium antimonide. Journal of Physics C: Solid State Physics, 1984, vol. 17, no. 34, pp. 6191–6197. Doi: 10.1088/0022-3719/17/34/019

16. Haug A. Band-to-band auger recombination in semiconductors. Journal of Physics and Chemistry of Solids, 1988, vol. 49, no. 6, pp. 599–605. Doi: 10.1016/0022-3697(88)90190-4

17. Pidgeon C. R., Ciesla C. M., Murdin B. N. Suppresion of non-radiative processes in semiconductor mid-infrared emitters and detectors. Progress in Quantum Electronics, 1998, vol. 21, no. 6, pp. 361–419. Doi: 10.1016/s0079-6727(97)00012-8

18. Levinshtein M., Rumyantsev S., Shur M. (eds.). Handbook series on semiconductor paramaters. Vol. 2: Ternaty and Quaternary III-V Compounds. Singapore, World Scientific Publishing Co. Pte. Ltd., 1999. 205 p. Doi: 10.1142/2046-vol2

19. Miller A., Garmire E., Kost A. Semiconductors and Semimetals, Volume 59. Nonlinear Optics in Semiconductors. II. New York, Academic, 1999.


Review

Views: 747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)