ИСПОЛЬЗОВАНИЕ КРИСТАЛЛОВ В ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ ДЛЯ НАБЛЮДЕНИЯ НОВЫХ ЯВЛЕНИЙ И РАЗВИТИЯ УСКОРИТЕЛЬНЫХ ТЕХНОЛОГИЙ
Анатацыя
При движении частиц высоких энергий вдоль осей или плоскостей кристалла они испытывают действие протяженного эффективного поля, напряженность которого на порядки превосходит величины, создаваемые любыми стационарными магнитами. Столь сильные поля открывают широкие возможности наблюдения новых явлений, измерения характеристик частиц, управления их пучками, а также генерации и поляризации последних. Многие из этих возможностей были предсказаны белорусскими учеными и наблюдались в ЦЕРН, ФНАЛ, ИФВЭ и других ускорительных центрах. Предложенные эффекты увеличения эффективности захвата частиц в режим каналирования при помощи выреза в кристалле и усиления их отклонения вследствие отражения от различных плоскостей одного кристалла позволяют усилить защиту сверхпроводящих магнитов Большого адронного коллайдера и проектируемого адронного коллайдера Будущего. Значительное усиление процесса излучения и рождения пар в кристаллах может оказывать влияние на функционирование калориметра Компактного мюонного соленоида (CSM) гамма-телескопа «Ферми», а также быть использовано при разработке более эффективных калориметров и гамма- телескопов в будущем. Эффект вращения спина каналированных частиц в изогнутых кристаллах делает возможным измерения магнитных и электрических дипольных моментов короткоживущих очарованных и бьюти-гиперонов, а также наблюдать изменение магнитного момента электрона.
Аб аўтарах
В. БарышевскийБеларусь
В. Тихомиров
Беларусь
Спіс літаратуры
1. Baryshevsky V. G. Channeling, Radiation and Reactions in Crystals at High Energies. Minsk, Belarusian State University, 1982. 256 p. (in Russian).
2. Baryshevskii V. G., Tikhomirov V. V. Synchrotron-type radiation processes in crystals and polarization phenomena accompanying them. Soviet Physics Uspekhi, 1989, vol. 32, no. 11, pp. 1013–1032. Doi: 10.1070/pu1989v032n11abeh002778
3. Baryshevsky V. G. High-Energy Nuclear Optics of Polarized Particles. World Press, 2012. 640 p. Doi: 10.1142/9789814324847
4. Tikhomirov V. V. A technique to improve crystal channeling efficiency of charged particles. Journal of Instrumentation, 2007, vol. 2, no. 8, p. 08006. Doi: 10.1088/1748-0221/2/08/P08006
5. Tikhomirov V. V. Multiple volume reflection from different planes inside one bent crystal. Physics Letters B, 2007, vol. 655, no. 5-6, pp. 217–222. Doi: 10.1016/j.physletb.2007.09.049
6. Ritus V. N. Quantum electrodynamics of the phenomena in a strong field. Trudy FIAN [Proc. P.N. Lebedev Physical Institute], 1979, vol. 111, pp. 3–151 (in Russian).
7. Erber T. High energy conversion processes in intense magnetic field. Reviews of Modern Physics, 1966, vol. 38, no. 4, pp. 626–659. Doi: 10.1103/revmodphys.38.626
8. Baier V. N., Katkov V. M., Fadin V. S. Radiation From Relativistic Electrons. Moscow, Atomizdat Publ., 1973. 376 p. (in Russian).
9. Berestetskii V. B., Lifshitz E. M., Pitaevskii L. P. Electrodynamics of hadrons. Quantum Electrodynamics. Second Edition. Butterworth-Heinemann, 1982, pp. 624–647. Doi: 10.1016/b978-0-08-050346-2.50020-9
10. Zimmermann F. High-energy physics strategies and future large-scale projects. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, vol. 355, pp. 4–10. Doi: 10.1016/j. nimb.2015.03.090
11. Elleaume P., Ropert A. The ultimate hard X-ray storage-ring-based light source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, vol. 500, no. 1–3, pp. 18–24. Doi: 10.1016/s0168-9002(03)00737-x
12. Lindhard J. Influence of crystal lattice on motion of energetic charged particles. Matematisk-fysiske Meddelelser. Det Kongelige Danske Videnskabernes Selskab. København, 1965. vol. 34, no. 14. 64 p.
13. Ter-Mikaelian M. L. High-energy Electromagnetic Processes in Condensed Media. New York, Wiley, 1972. 466 p.
14. Kimball J.C., Cue N. Quantum electrodynamics and channeling in crystals. Physics Reports, 1985, vol. 125, no. 2, pp. 69–101. Doi: 10.1016/0370-1573(85)90021-3
15. Baier V. N., Katkov V. M., Strakhovenko V. M. Electromagnetic Processes at High Energies in Oriented Single Crystals. Singapore, World Scientific, 1998. 568 p. Doi: 10.1142/9789812817532
16. Sorrensen A. H., Uggerhoj E. Channeling and channeling radiation. Nature, 1987, vol. 325, no. 6102, pp. 311–318. Doi: 10.1038/325311a0; Sorrensen A. H., Uggerhoj E. The channeling of electrons and positrons. Scientific American, 1989, vol. 260, no. 6, pp. 70–77.
17. Akhiezer A. I., Shul’ga N. F. High Energy Electrodynamics in Matter. New York, Gordon and Breach, 1996. 400 p.
18. Baryshevsky V. G., Dubovskaya I. Ya. Complex and anomalous Doppler effect for channeling positrons (electrons). Doklady Physics, 1976, vol. 21, pp. 711–714.
19. Kumakhov M. A. On the theory of electromagnetic radiation of charged particles in a crystal. Physics Letters A, 1976, vol. 57, no. 1, pp. 17–18. Doi: 10.1016/0375-9601(76)90438-2
20. Tsyganov E. N. Some aspects of the mechanism of a charge particle penetration through a monocrystal. Technical report. FermilabTN-683, 1976. Available at: http://lss.fnal.gov/archive/test-tm/0000/fermilab-tm-0682.pdf
21. Maslov M. A., Mokhov N. V., Yazynin I. A. The SSC Beam Scraper System. Superconducting Super Collider Laboratory SSCL-484. Dallas U.S.A, 1991. Available at: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/23/011/23011739.pdf
22. Ball A., Benedikt M., Bottura L., Dominguez O., Gianotti F., Goddard B., Lebrun P., Mangano M., Schulte D., Shaposhnikova E., Tomas R., Zimmermann F. Future circular collider study hadron collider parameters. Tech. Rep. FCC1401101315-DSC, 2014. Available at: https://indico.cern.ch/event/282344/attachments/519300/716459/FCC-1401101315-DSC_ HadronColliderParameters_V1.0_ForIndico.pdf
23. Lamont M. Estimates of annual proton doses in the LHC. LHC Project Note 375, 2005. Available at: http://cds.cern. ch/record/893060/files/project-note-375.pdf
24. Taratin A. M., Vorobiev S. A. “volume reflection” of high-energy charged particles in quasi-channeling states in bent crystals. Physics Letters A, 1987, vol. 119, no. 8 pp. 425–427. Doi: 10.1016/0375-9601(87)90587-1
25. Baryshevsky V. G., Dubovskaya I. Ya., Grubich A. O. Generation of γ-quanta by charged particles in the presence of a variable external field. Physics Letters A, 1980, vol. 77, no. 1, pp. 61–64. Doi: 10.1016/0375-9601(80)90637-4
26. Kaplin V. V., Plotnilov S. V., Vorobiev S. A. Radiation by charged particles channeled in deformed crystals. Zhurnal Tekhnicheskoi Fiziki = Journal of Applied Physics, 1980, vol. 50, pp. 1079–1081 (in Russian).
27. Scandale W. Use of crystals for beam deflection in particle accelerators. Modern Physics Letters A, 2012, vol. 27, no. 6, p.1230007. Doi: 10.1142/s0217732312300078
28. Vomiero A., Bagli E., Baricordi S., Dalpiaz P., Fiorini M., Guidi V., Mazzolari A., Vincenzi D., Milan R., Gianantonio Della Mea, Vallazza E., Afonin A. G., Chesnokov Yu. A., Maisheev V. A., Yazynin I. A., Golovatyuk V. M. Tikhomirov V. V. First observation of multiple volume reflection by different planes in one bent silicon crystal for high-energy protons. Physics Letters B, 2009. vol. 682, no. 3 pp. 274−277. Doi: 10.1016/j.physletb.2009.11.026
29. Scandale W., Vomiero A., Bagli E., Baricordi S., Dalpiaz P., Fiorini M., Guidi V., Mazzolari A., Vincenzi D., Milan R., Della Mea G., Vallazza E., Afonin A. G., Chesnokov Yu. A., Maisheev V. A., Yazynin I. A., Kovalenko A. D., Tikhomirov V. V. Observation of multiple volume reflection by different planes in one bent silicon crystal for high-energy negative particles. EPL (Europhysics Letters), 2011, vol. 93, no. 5, p. 56002. Doi: 10.1209/0295-5075/93/56002
30. Guidi V., Mazzolari A., Tikhomirov V. On the observation of multiple volume reflection from different planes inside one bent crystal. Journal of Applied Physics, 2010. vol. 107, no. 11, p. 114908. Doi: 10.1063/1.3407526
31. Tikhomirov V. V., Sytov A. I. Multiple Volume Reflection as an Origin of Significant Scattering Intensity and Radiation Power Increase. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. vol. 309. pp. 109–114. Doi: 10.1016/j.nimb.2013.01.068
32. Baryshevsky V. G., Tikhomirov V. V. Birefringence of the high-energy γ-quanta in monocrystals. Sov. J. Nucl. Phys., 1982, vol. 36, pp. 408–416.; Baryshevsky V. G., Tikhomirov V. V. Birefringence of the high-energy γ-quanta in monocrystals. Physics Letters A, 1982, vol. 90, no. 3, pp. 153–155. Doi: 10.1016/0375-9601(82)90722-8
33. Belkacem A., Bologna G., Chevallier M., Cue N., Gaillard M. J., Genre R., Kimball J. C., Kirsch R., Marsh B., Peigneux J. P., Poizat J. C., Remillieux J., Sillou D., Spighel M., Sun C. R. Study of e+e− pair creation by 20-150 GeV photons incident on a germanium crystal in alignment conditions. Physical Review Letters, 1987, vol. 58, no. 12, pp. 1196–1199. Doi: 10.1103/physrevlett.58.1196
34. Bak J. F., Barberis D., Brodbeck T. J., Doyle A. T., Ellison R. J., Elsener K., Hughes-Jones R. E., Kolya S. D., Mercer D., Møller S. P., Newton D., Ottewell P. J., Petersen J. B. B., Siffert P., Sørensen A. H., Thompson R. J., Uggerhø E., Wilson G. W. e+e− pair creation by 40–150 GeV photons incident near the axis in a germanium crystal. Physics Letters B, 1988, vol. 202, no. 4, pp. 615–619. Doi: 10.1016/0370-2693(88)91874-6
35. Belkacem A., Bologna G., Chevallier M., Cue N., Gaillard M. J., Genre R., Kimball J. C., Kirsch R., Marsh B., Peigneux J. P., Poizat J. C., Remillieux J., Sillou D., Spighel M., Sunet C. R. New channeling effects in the radiative emission of 150 GeV electrons in a thin germanium crystal. Physics Letters B, 1986, vol. 177, no. 2, pp. 211–216. Doi: 10.1016/0370- 2693(86)91059-2
36. Tikhomirov V. V. The position of the peak in the spectrum of 150 GeV electron energy losses in a thin Germanium crystal is proposed to be determined by radiation cooling. Physics Letters A, 1987, vol. 125, no. 8. pp. 411–415. Doi: 10.1016/0375-9601(87)90173-3
37. Tikhomirov V. V. Simulation of multi-GeV electron energy losses in crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1989, vol. 36, no. 3, pp. 282–285. Doi: 10.1016/0168-583x(89)90670-8
38. Artru X. A simulation code for channeling radiation by ultrarelativistic electrons or positrons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1990, vol. 48, no. 1-4, pp. 278–282. Doi: 10.1016/0168-583x(90)90122-b
39. Baurichter A. A. Baurichter, K. Kirsebom, Yu. V. Kononets, R. Medenwaldt, U. Mikkelsen, S. P. Møller, E. Uggerhøj, T. Worm, K. Elsener, S. Ballestrero, P. Sona, J. Romano, S. H. Connell, J. P. F. Sellschop, R. O. Avakian, Avetisian A. E., Taroian S. P. Radiation emission and its influence on the motion of multi-GeV electrons and positrons in strong crystalline fields. Physical Review Letters, 1997, vol. 79, no. 18, pp. 3415–3419. Doi: 10.1103/physrevlett.79.3415
40. Kirsebom K., Mikkelsen U., Uggerhøj E., Elsener K., Ballestrero S., Sona P., Connell S. H., Sellschop J. P. F., Vilakazi Z. Z. Radiation emission and its influence on the motion of multi-GeV electrons and positrons incident on a single diamond crystal. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, vol. 174, pp. 274–296. Doi: 10.1016/s0168-583x(00)00517-6
41. Baryshevsky V. G., Haurylavets V. V., Korjik M. V., Lobko A. S., Mechinsky V. A., Sytov A. I., Tikhomirov V. V., Uglov V. V. On the influence of crystal structure on the electromagnetic shower development in the lead tungstate crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1989, vol. 402, pp. 35–39. Doi: 10.1016/j.nimb.2017.02.066
42. Guidi V., Bandiera L., Tikhomirov V. V. Radiation generated by single and multiple volume reflection of ultrarelativistic electrons and positrons in bent crystals. Physical Review A, 2012, vol. 86, no. 4, p. 042903. Doi: 10.1103/ physreva.86.042903.
43. Bandiera L., Bagli E., Guidi V., Mazzolari A., Berra A., Lietti D., Prest M., Vallazza E., De Salvador D., Tikhomirov V. Broad and intense radiation accompanying multiple volume reflection of ultrarelativistic electrons in a bent crystal. Physical Review Letters, 2013, vol. 111, no. 25, p. 255502. Doi: 10.1103/physrevlett.111.255502
44. Mazzolari A, Bagli E., Bandiera L., Guidi V., Backe H., Lauth W., Tikhomirov V., Berra A., Lietti D., Prest M., Vallazza E., De Salvador D. Steering of a sub-GeV electron beam through planar channeling enhanced by rechanneling. Physical Review Letters, 2014, vol. 112, no. 13. p. 135503. Doi: 10.1103/physrevlett.112.135503
45. Bandiera L., Bagli E., Germogli G., Guidi V., Mazzolari A., Backe H., Lauth W., Berra A., Lietti D., Prest M., De Salvador D., Vallazza E., Tikhomirov V. Investigation of the electromagnetic radiation emitted by sub-GeV electrons in a bent crystal. Physical Review Letters, 2015, vol. 115, no. 2, p. 025504. Doi: 10.1103/physrevlett.115.025504.
46. Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at √s = 7 TeV. Journal of Instrumentation, 2013, vol. 8, no. 09, P09009. Doi: 10.1088/1748-0221/8/09/p09009
47. Tikhomirov V. V. On the possibility of crystal use in gamma-telescopes. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2015, vol. 59, no. 1, pp. 41–47 (in Russian).
48. Bagli E., Bandiera L., Bellucci V., Berra A., Camattari R., De Salvador D., Germogli G., Guidi V., Lanzoni L., Lietti D., Mazzolari A., Prest M., Tikhomirov V., Vallazza E. Experimental evidence of planar channeling in a periodically bent crystal. The European Physical Journal C, 2014, vol. 74, no. 10, p. 3114. Doi: 10.1140/epjc/s10052-014-3114-x
49. Korol A. V., Solov’yov A. V., Greiner W. Channeling and Radiation in Periodically Bent Crystals. Springer-Verlag, Berlin, Heidelberg, 2014. 284 p. Doi: 10.1007/978-3-642-31895-5
50. Baryshevsky V. G. Tikhomirov V. V. Crystal undulators: from the prediction to the mature simulations. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B. 2013, vol. 309, pp. 30–36. Doi: 10.1016/j.nimb.2013.03.013
51. Tikhomirov V. V. A benchmark construction of positron crystal undulator. 2015. Available at: http://inp.bsu.by/ personal/tikhomirov/1502.06588.pdf
52. Baryshevsky V. G. Spin rotation of ultrarelativistic particles passing through a crystal. Pis’ma v zhurnal tekhnicheskoi fiziki = Applied Physics Letters, 1979, vol. 5, pp. 182–184 (in Russian).
53. Baublis V. V. (et al.) First observation of spin precession of polarized Σ+ hyperons channeled in bent crystals. LNPI Research Report (1990–1991) E761 Collaboration. St. Pertersburg, 1992, pp. 24–26.
54. Baryshevsky V. G. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals. Physics Letters B, 2016, vol. 757, pp. 426–429. Doi: 10.1016/j.physletb.2016.04.025
55. Fomin A. S., Korchin A. Yu., Stocchi A., Bezshyyko O. A. , Burmistrov L., Fomin S. P., Kirillin I. V., Massacrier L., Natochii A., Robbe P., Scandale W. , Shul’ga N. F. Feasibility of measuring the magnetic dipole moments of the charm baryons at the LHC using bent crystals. Journal of High Energy Physics, 2017, vol. 2017, no. 8. Doi: 10.1007/jhep08(2017)120
56. Botella F. J., Garcia Martin L. M., Marangotto D., Martinez Vidal1 F., Merli A., Neriz N., Oyanguren A., Ruiz Vidal J. On the search for the electric dipole moment of strange and charm baryons at LHC. The European Physical Journal C, 2017, vol. 77, no. 3. Doi: 10.1140/epjc/s10052-017-4679-y
57. Baryshevsky V. G. Spin rotation and depolarization of high-energy particles in crystals at LHC and FCC energies. The possibility to measure the anomalous magnetic moments of short-lived particles and quadrupole moment of Ω-hyperon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, vol. 402, pp. 5–10. Doi: 10.1016/j.nimb.2017.02.081