NEW EXPERIMENTAL AND THEORETICAL TASKS IN MODERN PARTICLE AND NUCLEA R PHYSICS
Abstract
We discuss the existence of new phenomena and properties of nonperturbative evolution of color quarks, gluons and other states in stochastic vacuum of quantum chromodynamics, color dissipation and confinement; instability of movement of color particles in the confinement region; appearance of squeezed and entangled states of strongly interacting particles; correlation properties of strong instanton decays; chaos-assisted instanton tunneling; quark-gluon plasma properties description in terms of the Hagedorn bootstrap statistical model.
About the Authors
V. I. KuvshinovBelarus
D. Sc. (Physics and Mathematics), Professor, Head of the Laboratory for Problems of Nuclear Physics and Safety
P.O. box 119, 220109, Minsk
E. G. Bagashov
Belarus
M. Sc. (Physics and Mathematics), Junior Researcher
P.O. box 119, 220109, Minsk
V. A. Shaparau
Belarus
Senior Researcher
P.O. box 119, 220109, Minsk
A. V. Kuzmin
Belarus
Ph. D. (Physics and Mathematics), Director General
P.O. box 119, 220109, Minsk
References
1. References I
2. I.1. Simonov Y. A. The Confinement. Physics-Uspekhi, 1996, vol. 31, no. 4, pp. 313–336. Doi: 10.1070/PU1996v039 n04ABEH000140
3. I.2. Giacomo A. D., Dosch H., Shevchenko V. I., Simonov Y. A. Field correlators in QCD. Theory and applications. Physics Reports, 2002, vol. 372, no. 4, pp. 319–368. Doi: 10.1016/S0370-1573(02)00140-0
4. I.3. Ambjørn J., Olesen P. On the Formation of a Color Magnetic Quantum Liquid in QCD. Nuclear Physics B, 1980, vol. 170, no. 1, pp. 60–78. Doi: 10.1016/0550-3213(80)90476-9
5. I.4. Kuz’menko D. S., Simonov Y. A., Shevchenko V. I. Vacuum, Confinement and QCD Strings in the Vacuum Correlator Method. Physics-Uspekhi, 2004, vol. 47, no. 1, pp. 1–15. Doi: 10.1070/PU2004v047n01ABEH001696
6. I.5. Kuvshinov V. I., Kuzmin A. V. Gauge Fields and Theory of Deterministic Chaos. Minsk, Belorusskaya nauka Publ., 2006. 268 p. (in Russian).
7. I.6. Kuvshinov V. I., Buividovich P. V. White Mixed States in QCD Stochastic Vacuum. Nonlinear Phenomena in Complex Systems, 2005, vol. 8 , no. 3, pp. 313–316.
8. I.7. Kuvshinov V. I., Buividovich P. V. Decoherence of Quark Colour States in QCD Vacuum. Acta Physica Polonica B (Proceedings Supplement), 2008, vol. 1, no. 3, pp. 579–582.
9. I.8. Haake F. Quantum Signatures of Chaos. Berlin, Springer-Verlag, 1991. 576 p.
10. I.9. Kuvshinov V. I., Kuzmin A. V. Stability of holonomic quantum computations. Physics Letters A, 2003, vol. 316, no. 6, pp. 391–394. Doi: 10.1016/j.physleta.2003.08.011
11. I.10. Reineker P. Exciton Dynamics in Molecular Crystals and Aggregates. Berlin, Springer-Verlag, 1991. 228 p.
12. I.11. Kuvshinov V. I., Buividovich P. V. Fidelity and Wilson Loop for Quarks in Confinement Region. Acta Physica Polonica, 2005, vol. 36, no. 2, pp. 195–200.
13. I.12. Savvidy G. K. Infrared Instability of the Vacuum State of Gauge Theories and Asymptotic Freedom. Physics Letters B, 1977, vol. 71, no. 1, pp. 133–134. Doi: 10.1016/0370-2693(77)90759-6
14. I.13. Kawabe T., Ohta S. Onset of chaos in time-dependent spherically symmetric SU(2) Yang-Mills theory. Physical Review D, 1990, vol. 41, no. 6, pp. 1983–1988. Doi: 10.1103/physrevd.41.1983
15. I.14. Kuvshinov V. I., Kuzmin A. V. Chaos-order transitions in SU(2) Yang-Mills-Higgs systems. Nonlinear Phenomena in Complex Systems, 1999, vol. 2, no. 3, pp. 100–104.
16. I.15. Kuvshinov V. I., Kuzmin A. V. The Influence of Quantum Field Fluctuations on Chaotic Dynamics of YangMills System. Journal of Nonlinear Mathematical Physics, 2002, vol. 9, no. 4, pp. 382–388. Doi: 10.2991/jnmp.2002.9.4.1
17. References II
18. II.1. Dokshitzer Yu. L., Khoze V. A., Troyan S. I., Mueller A.H. QCD coherence in high-energy physics. Reviews of Modern Physics, 1988, vol. 60, no. 2, pp. 373–388. Doi: 10.1103/revmodphys.60.373
19. II.2. Dokshitzer Yu. L., Khoze V. A., Mueller A. H., Troyan S. I. Basics of Perturbative QCD. Frontières, France, 1991. 276 p.
20. II.3. Kuvshinov V. I. Jet and background multiplicity distribution associated with high p⊥ particle in pp-collisions. Acta Physica Polonica B, 1979, vol. 10, no. 1, pp. 19–21.
21. II.4. Kokoulina E. S., Kuvshinov V. I. Correlations of charged hadrons in quark and gluon jets. Acta Physica Polonica B, 1982, vol. 13, no. 7, pp. 553–558.
22. II.5. Malaza E. D., Webber B. R. Multiplicity distributions in quark and gluon jets. Nuclear Physics B, 1986, vol. 267, no. 3-4, pp. 702–713. Doi: 10.1016/0550-3213(86)90138-0
23. II.6. Dremin I. M., Hwa R. C. Quark and gluon jets QCD: Factorial and cumulant moments. Physical Review D, 1994, vol. 49, no. 11, pp. 5805–5811. Doi: 10.1103/physrevd.49.5805
24. II.7. Lupia S., Ochs W., Wosiek J. Poissonian limit of soft gluon multiplicity. Nuclear Physics B, 1999, vol. 540, no. 1-2, pp. 405–433. Doi: 10.1016/s0550-3213(98)00753-6
25. II.8. Kilin S. Ya., Kuvshinov V. I., Firago S. A. Squeezed colour states in gluon jet. NASA. Goddard Space Flight Center, The Second International Workshop on Squeezed States and Uncertainty Relations: Conference Paper. USA, 1993, pp. 301–303.
26. II.9. Kuvshinov V. I., Shaporov V. A. Gluon squeezed states in QCD jet. Acta Physica Polonica B, 1999, vol. 30, no. 1, pp. 59–68.
27. II.10. Kuvshinov V. I., Shaparau V. A. Squeezed States of Colour Gluons in QCD Isolated Jet. Nonlinear Phenomena in Complex Systems, 2000, vol. 3, no. 1, pp. 28–36.
28. II.11. Kuvshinov V. I., Shaparau V. A. Fluctuations and Correlations of Soft Gluons at the Nonperturbative Stage of Evolution of QCD Jets. Physics of Atomic Nuclei, 2002, vol. 65, no. 2, pp. 309–314. Doi: 10.1134/1.1451947
29. II.12. Hirota O. Squeezed light. Japan, Tokyo, 1992. 267 p.
30. II.13. Walls D. F., Milburn G. J. Quantum Optics. N.Y., USA, Springer-Verlag, 1994. Doi: 10.1007/978-3-642-79504-6
31. II.14. Scully M. O., Zubairy M. S. Quantum Optics. Cambridge University Press, 1997. Doi: 10.1017/cbo9780511813993
32. II.15. Kilin S. Ya. Quantum Optics. Minsk, Nauka i Technika Publ., 1990. 176 p. (in Russian).
33. II.16. Dodonov V. V., Dremin I. M., Polynkin P. G., Man’ko V. I. Strong oscillations of cumulants of photon distribution function in slightly squeezed ststes. Physics Letters A, 1994, vol. 193, no. 3, pp. 209–217. Doi: 10.1016/0375-9601(94)90585-1
34. II.17. Alner G.J., Alpga˚rd K., Anderer P., Ansorge R. E., A˚sman B., Berglund S., Berkelman K., Bertrand D., Booth C.N., Buffam C., Burow L., Carlson P., Chevalley J.-L., Declercq C., DeWolf R. S., Eckart B., Ekspong G., Evangelou I., (et al.). UA5 Collaboration. UA5: A general study of proton-antiproton physics at s = 546 GeV. Physics Reports, 1987, vol. 154, no. 5-6, pp. 247–383. Doi: 10.1016/0370-1573(87)90130-x
35. II.18. Abreu P. (et al.). DELPHI Collaboration. Charged particle multiplicity distributions in Z hadronic decays. Zeitschrift für Physik C, 1991, vol. 50, pp. 185–194.
36. II.19. Acton P. D. (et al.). OPAL Collaboration. A study of charged particle multiplicities in hadronic decays of the Z0 . Zeitschrift für Physik C, 1992, vol. 53, pp. 539–554.
37. II.20. Kilin S. Ya. Chapter 1. Quanta and Information. Wolf E. (ed.). Progress in Optics, 2001, vol. 42, pp. 1–91. Doi: 10.1016/s0079-6638(01)80015-9
38. II.21. Bell J. S. On the Einstein Podolsky Rosen paradox. Physics, 1964, vol. 1, no. 3, pp. 195–200.
39. II.22. Einstein A., Podolsky B., Rosen N. Can Quantum-Mechanical description of physical reality be considered complete? Physical Review, 1935, vol. 47, no. 10, pp. 777–780. Doi: 10.1103/physrev.47.777
40. II.23. Kuvshinov V. I., Shaparau V. A. Non-perturbative Squeezed Gluon States. Proceedings of the 11th Annual Seminar “Nonlinear Phenomena in Complex Systems” (Minsk, May 13–16, 2002), Nonlinear Phenomena in Complex Systems, 2003, vol. 11, pp. 242–254.
41. II.24. De Wolf E. A., Dremin I. M., Kittel W. Scaling laws for density correlations and fluctuations in multiparticle dynamics. Physics Reports, 1996, vol. 270, no. 1-2, pp. 1–141. Doi: 10.1016/0370-1573(95)00069-0
42. II.25. Kuvshinov V. I., Shaparau V. A. Entangled Collinear Gluon States. Nonlinear Phenomena in Complex Systems, 2003, vol. 6, no. 4, pp. 898–902.
43. II.26. Dodonov V. V., de Castro A. S. M., Mizrahi S. S. Covariance entanglement measure for two-mode continuous variable systems. Physics Letters A, 2002, vol. 296, no. 2-3, pp. 73–81. Doi: 10.1016/s0375-9601(02)00254-2
44. References III
45. III.1. Moch S., Ringwald A., Schrempp F. Instantons in deep inelastic scattering: The Simplest process. Nuclear Physics B, 1997, vol. 507, no. 1-2, pp. 134–156. Doi: 10.1016/s0550-3213(97)00592-0
46. III.2. Ringwald A., Schrempp F. Istanton-Induced Cross-Sections in Deep-Inelastic Scattering. Physics Letters B, 1998, vol. 438, no. 1-2, pp. 217–288. Doi: 10.1016/s0370-2693(98)00953-8
47. III.3. Ringwald A., Schrempp F. QCD-Instantons at HERA – An Introduction. Journal of Physics G: Nuclear and Particle Physics, 1999, vol. 25, no. 7, pp. 1297–1306. Doi: 10.1088/0954-3899/25/7/305
48. III.4. Carli T., Gerigk J., Ringwald A., Schrempp F. QCD Instanton-induced Processes in Deep-inelastic Scattering - Search Strategies and Model Dependencies. Doyle A. T., Grindhammer G., Ingelman G., Jung H. (eds.). Monte Carlo Generators for HERA Physics. Proceedings of the Workshop 1998/99. Available at: https://arxiv.org/pdf/hep-ph/9906441.pdf
49. III.5. Kuvshinov V., Shulyakovsky R. Correlation signs of installions in multigluon production processes. Acta Physica Polonica B, 1997, vol. 28, no. 7, pp. 1629–1634.
50. III.6. Kuvshinov V., Shulyakovsky R. Gluon correlation moments ratio in the instanton field. Acta Physica Polonica B, 1999, vol. 30, no. 1, pp. 69–71.
51. III.7. Kuvshinov V. I., Kashkan V. I., Shulyakovsky R. G. Effect of hadronization Proceedin the instanton production. Nonlinear phenomena in complex systems: Fractals, chaos, phase transitions, self-organization: Proceedings of the Ninth Annual Seminar NPCS’2000. Minsk, Inst. of Physics, 2000, pp. 292.
52. III.8. Kashkan, V. I., Kuvshinov V. I., Shulyakovsky, R. G. QCD-instantons: experimental signatures and Monte-Carlo simulation. Proceedings of CERN-CMS-week (December 6–18, 1999, Geneva, Switzerland). Geneva, 1999.
53. III.9. Schaefer T., Shuryak E. Instantons in QCD. Reviews of Modern Physics, 1998, vol. 70, no. 2, pp. 323–425. Doi: 10.1103/revmodphys.70.323
54. III.10. Kashkan, V. I., Kuvshinov, V. I., Shulyakovsky R. G. Effect of hadronization on the form of correlation moments for instanton processes and possibility of discovering them experimentally. Physics of Atomic Nuclei, 2002, vol. 65, no. 5, pp. 925–928. Doi: 10.1134/1.1481487
55. III.11. Chekanov S. et al. Search for QCD-instanton induced events in deep inelastic e p scattering at HERA. The European Physical Journal C – Particles and Fields, 2004, vol. 34, no. 3, pp. 255–265. Doi: 10.1140/epjc/s2004-01735-3
56. References IV
57. IV.1. Lin W. A., Ballentine L. E. Quantum Tunneling Chaos in Driven Anharmonic Oscillator. Physical Review Letters, 1990, vol. 65, no. 24, pp. 2927–2930. Doi: 10.1103/physrevlett.65.2927
58. IV.2. Grossmann F., Dittrich T., Jung P., Hanggi P. Coherent destruction of tunneling. Physical Review Letters, 1991, vol. 67, no. 4, pp. 516–519. Doi: 10.1103/physrevlett.67.516
59. IV.3. Kuvshinov V. I., Kuzmin A. V., Shulyakovsky R. G. Chaos assisted instanton tunneling in one dimensional perturbed periodic potential. Physical Review E, 2003, vol. 67, no. 1, p. 015201. Doi: 10.1103/PhysRevE.67.015201
60. IV.4. Kuvshinov V., Kuzmin A. Gauge Fields and Theory of Determenistic Chaos. Minsk, Belaruskaya Navuka Publ., 2006. 268 p. (in Russian).
61. IV.5. Kittel C. Introduction to solid state physics, New-York, 1956. 617 p. IV.6. Rajaraman R. Solitons and Instantons. Amsterdam, Elsevier, 1982. 415 p.
62. IV.7. Berman G. P., Zaslavsky G. M. Quantum mappings and the problem of stochasticity in quantumsystems. Physica A: Statistical Mechanics and its Applications, 1982, vol. 111, no. 1-2, pp. 17–44. Doi: 10.1016/0378-4371(82)90081-4
63. References V
64. V.1. Hagedorn R. Statistical thermodynamics of strong interactions at high energies. Nuovo Cimento, Suppl., 1965, vol. 3, pp. 147–186.
65. V.2. Bialas A., Peschanski R. Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions. Nuclear Physics B, 1986, vol. 273, no. 3-4, pp. 703–718. Doi: 10.1016/0550-3213(86)90386-x
66. V.3. Burgers G. H. J., Hagedorn R., Kuvshinov V. Multiplicity distributions in high-energy collisions derived from the statistical bootstrap model. Physics Letters B, 1987, vol. 195, no. 3, pp. 507–510. Doi: 10.1016/0370-2693(87)90059-1
67. V.4. Burgers G. H. J., Fuglesang C., Hagedorn R., Kuvshinov V. Multiplicity distributions in hadron interactions derived from the statistical bootstrap model. Zeitschrift für Physik C, 1990, vol. 46, no. 3, pp. 465–480.
68. V.5. Van Hove L. Hadrons and Quarks in High Energy Collisions. Soviet Physics Uspekhi, 1978, vol. 21, no. 3, рр. 252– 264. Doi: 10.1070/PU1978v021n03ABEH005533
69. V.6. Babichev L.F., Klenitsky D. V., Kuvshinov V. I. Fractal Structure in the First Order QCD Phase Transition. Nonlinear Phenomena in Complex Systems, 1999, vol. 2, no. 3, pp. 82–85.
70. V.7. Babichev L. F., Bukach A. A., Kuvshinov V. I., Shaporov V. A. Intermittency in Ginzburg-Landau model for patronhadron phase transitions. Physics of Atomic Nuclei, 2004, vol. 67, no. 3, pp. 574–581. Doi: 10.1134/1.1690067