GEOMETRICAL MODELING OF COMPRESSIBILITY DYNAMICS OF THE LANGMUIR MONOLAYER
https://doi.org/10.29235/1561-2430-2018-54-1-84-96
Abstract
In the article, the previously constructed geometrical model, which describes the first-order phase transition dynamics in the configuration Finsler space of the Langmuir monolayer, is developed. The behavior both of a Cartan vector and a Berwald curvature of the Finsler space is studied. The Berwald curvature is found to change significantly during the first-order phase transition from liquid to crystal. The correspondence between the Berwald curvature behavior and the dynamics of monolayer thermodynamic parameters: surface pressure and compressibility, is established. The agreement between theoretical dependences and experimental data is shown. An approximate analytical expression is found for compressibility, as a function of the Berwald curvature at low compression rates. Comparison of numerical simulation results with the experimental isotherms reveals that the formation of phase nuclei with large relaxation times determines the phase transition dynamics during the monolayer formation with large compression rates.
About the Authors
N. G. KrylovaBelarus
Researcher of the Laboratory of Dielectric Spectroscopy of Heterogeneous Systems of the Physics Faculty
H. V. Grushevskaya
Belarus
Ph. D. (Physics and Mathematics), Leading Researcher of the Laboratory of Dielectric Spectroscopy of Heterogeneous Systems of the Physics Faculty
References
1. Moehwald H., Brezesinski G. From Langmuir monolayers to multilayer films. Langmuir, 2016, vol. 32, no. 41, pp. 10445− 10458. Doi: 10.1021/acs.langmuir.6b02518
2. Acharya S., Hill J. P., Ariga K. Soft Langmuir – Blodgett technique for hard nanomaterials. Advanced Materials, 2009, vol. 21, no. 29, pp. 2959–2981. Doi: 10.1002/adma.200802648
3. Blinov L. M. Langmuir films. Uspekhi Fizicheskih Nauk, 1988, vol. 155, no. 7, pp. 443–480 (in Russian). Doi: 10.3367/ ufnr.0155.198807c.0443
4. Andelman D., Brochard F., Knobler C., Rondelez F. Structures and phase transitions in Langmuir monolayers. Gelbart W. M., Ben-Shaul A., Roux D. (eds.). Micelles, Membranes, Microemulsions, and Monolayers. New York, Springer, 1994, pp. 559–602. Doi: 10.1007/978-1-4613-8389-5_12
5. Toma L. M., Gengler R. Y., Prinsen E. B., Gournis D, Rudolf P. A Langmuir-Schaefer approach for the synthesis of highly ordered organoclay thin films. Physical Chemistry Chemical Physics, 2010, vol. 12, no. 38, pp. 12188–12197. Doi: 10.1039/c0cp00286k
6. Vollhardt D., Fainerman V. B. New aspects in the consideration of compressibility of Langmuir monolayers. Miller R., Liggieri L. (eds.). Interfacial Reology. Boston, Brill, 2009, pp. 429‒475.
7. Grushevskaya H. V., Krylova N. G., Lipnevich I. V. Design and compressibility of Langmuir monolayers from organometallic nanocyclic complexes. Journal of Physics: Conference Series, 2016, vol. 741, pp. 012116. Doi:10.1088/1742-6596/741/1/012116
8. Gutierrez-Campos A., Diaz-Leines G., Castillo R. Domain growth, pattern formation, and morphology transitions in Langmuir monolayers. A new growth instability. The Journal of Physical Chemistry B, 2010, vol. 114, no. 15, pp. 5034–5046. Doi: 10.1021/jp910344h
9. Datta A., Kmetko J., Yu C.-J., A. G. Richter C.-J., Chung K.-S., Bai J.-M., Dutta P. pH-Dependent appearance of chiral structure in a Langmuir monolayer. The Journal of Physical Chemistry B, 2000, vol. 104, no. 24, pp. 5797–5802. Doi: 10.1021/ jp0006375
10. Vollhardt D., Fainerman V. B. Kinetics of Two-Dimensional Phase Transition of Langmuir Monolayers. The Journal of Physical Chemistry B, 2002, vol. 106, no. 2, pp. 345–351. Doi: 10.1021/jp012798u
11. Grushevskii V. V., Krylova H. V. The thermodynamics of phase states in Langmuir-Blodgett monolayers. Nizko razmernye sistemy-2: Fiziko-khimiya elementov i sistem s nizkorazmernym strukturirovaniem (poluchenie, diagnostika, prime-nenie novykh materialov i struktur): sb. nauch. rabot [Low-dimensional systems-2. Physical chemistry of elements and systems with low-dimensional structuring (acquisition, diagnostics, application of new materials and structures): a collection of scientific papers]. Grodno, Grodno State University, 2005, Is. 4, pp. 30–36 (in Russian).
12. Nandi N., Vollhardt D. Anomalous temperature dependence of domain shape in Langmuir monolayers: Role of dipolar interaction. The Journal of Physical Chemistry B, 2004, vol. 108, no. 49, pp. 18793–18795. Doi: 10.1021/jp0461697
13. Lopez J. M., Vogel M. J., Hirsa A. H. Influence of coexisting phases on the surface dilatational viscosity of Langmuir monolayers. Physical Review E, 2004, vol. 70, no. 5, p. 056308. Doi: 10.1103/physreve.70.056308
14. Arriaga L. R., Lopez-Montero I., Ignes-Mullol J., Monroy F. Domain-growth kinetic origin of nonhorizontal phase coexistence plateaux in Langmuir monolayers: Compression rigidity of a raft-like lipid distribution. The Journal of Physical Chemistry B, 2010, vol. 114, no. 13, pp. 4509–4520. Doi: 10.1021/jp9118953
15. Balan, V., Grushevskaya H. V., Krylova N. G., Neagu M. Multiple-relaxation-time Finsler-Lagrange dynamics in a сompressed Langmuir monolayer. Nonlinear Phenomena in Complex Systems, 2016, vol. 19, no. 3, pp. 223–253.
16. Grushevskaya G. V., Krylova N. G. Finsler geometry effects in physics of surface phenomenon: the case of monolayer system. Giperkompleksnye chisla v geometrii i fizike = Hypercomplex numbers in geometry and physics, 2011, vol. 8, pp. 128– 146 (in Russian).
17. Balan V., Grushevskaya H., Krylova N. Finsler geometry approach to thermodynamics of first order phase transitions in monolayers. Differential Geometry – Dynamical Systems, 2015, vol. 17, pp. 24–31.
18. Chern S.-S., Shen Z. Riemann-Finsler Geometry. Singapore, World Scientific Publishing Co, 2005. 192 p. Doi: 10.1142/5263
19. Bao D., Chern S., Shen Z. An Introduction to Riemann-Finsler Geometry. Berlin, Springer, 2000. 435 p. Doi: 10.1007/978-1-4612-1268-3
20. Voicu N. On the fundamental equations of electromagnetism in finslerian spacetimes. Progress in Electromagnetics Research, 2011, vol. 113, pp. 83–102. Doi:10.2528/PIER10122108
21. Gitterman M, Halpern V. Phase transitions. A Brief account with modern applications. World Scientific Publishing Co, 2004. 144 p. Doi: 10.1142/5573
22. Landau L. D., Lifshitz E. M. Theoretical physics, vol. 5. Statistical physics, part 1. Moscow, Nauka, 1976. 584 p. (in Russian).
23. Vollhardt D., Fainerman V. B. Progress in characterization of Langmuir monolayers by consideration of compressibility. Advances in Colloid and Interface Science, 2006, vol. 127, pp. 83–97. Doi: 10.1016/j.cis.2006.11.006
24. Nicolaou Z. G., Motter A. E. Mechanical metamaterials with negative compressibility transitions. Nature Materials, 2012, vol. 11, pp. 608–613. Doi:10.1038/nmat3331
25. Imre A. R. Metamaterials with negative compressibility – a novel concept with a long history. Materials Science-Poland, 2014, vol. 32, no. 2, pp. 126–129. Doi: 10.2478/s13536-013-0179-4
26. Krylova N. G., Grushevskaya H. V., Red’kov V. M. First-order phase transition dynamics in the Finsler configuration space of the Langmuir monolayer. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2017, no. 3, pp. 66–77 (in Russian).