Preview

Известия Национальной академии наук Беларуси. Серия физико-математических наук

Пашыраны пошук

СМЕШАННАЯ ЗАДАЧА ДЛЯ ОДНОМЕРНОГО ГИПЕРБОЛИЧЕСКОГО УРАВНЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА C ПЕРИОДИЧЕСКИМИ УСЛОВИЯМИ

https://doi.org/10.29235/1561-2430-2018-54-2-135-148

Анатацыя

Изучается классическое решение граничной задачи для строго гиперболического уравнения четвертого порядка в случае двух независимых переменных с четырьмя различными семействами характеристик. Заметим, что корректная постановка смешанных задач для гиперболических уравнений зависит не только от количества характеристик, но также и от их расположения. Оператор уравнения представляет собой композицию дифференциальных операторов первого порядка. Уравнение задается в полуполосе двух независимых переменных. На нижнем основании области задаются условия Коши, а на боковых границах – периодические условия. Методом характеристик выписывается в аналитическом виде решение рассматриваемой задачи. Доказывается единственность решения. Заметим также, что решение во всей заданной области представляет собой композицию найденных решений в некоторых подобластях. Таким образом, для того чтобы найденное классическое решение обладало искомой гладкостью, необходимо, чтобы на границе данных подобластей значения этих кусочных решений, а также их производных до четвертого порядка, совпадали. Под классическим решением понимается функция, которая определена во всех точках замыкания заданной области и имеет все классические производные, входящие в уравнение и условия задачи.

Аб аўтарах

В. Корзюк
Белорусский государственный университет; Институт математики Национальной академии наук Беларуси.
Расія


Нгуен Ван Винь
Белорусский государственный университет; Хюэский университет.
Расія


Спіс літаратуры

1. Корзюк, В. И. Классические решения смешанных задач для одномерного биволнового уравнения / В. И. Кор- з юк, Нгуен Ван Винь // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2016. – № 1. – С. 69–79.

2. Корзюк, В. И. Классическое решение задачи с интегральным условием для одномерного биволнового уравнения / В. И. Корзюк, Нгуен Ван Винь // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2016. – № 3. – С. 16–29.

3. Корзюк, В. И. решение задачи для нестрого гиперболического уравнения четвертого порядка с двукратными характеристиками / В. И. Корзюк, Нгуен Ван Винь // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2017. – № 1. – С. 38–52.

4. Korzyuk, V. I. Cauchy problem for some fourth-order nonstrictly hyperbolic equations / V. I. Korzyuk, N. V. Vinh // Nanosystems: Physics, Chemistry, Mathematics. – 2016. – 7 (5). – P. 869–879. https://doi.org/10.17586/2220-8054-2016-7-5-869-879

5. Корзюк, В. И. решение задачи Коши для гиперболического уравнения с постоянными коэффициентами в случае двух независимых переменных / В. И. Корзюк, И. С. Козловская // Дифференц. уравнения. – 2012. – Т. 48, № 5. – С. 700–709.


##reviewer.review.form##

Праглядаў: 1109


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)