НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ ОТ НАЧАЛЬНЫХ ДАННЫХ РЕШЕНИЙ СТОХАСТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ДРОБНЫМИ БРОУНОВСКИМИ ДВИЖЕНИЯМИ
https://doi.org/10.29235/1561-2430-2018-54-2-193-209
Анатацыя
Спіс літаратуры
1. Gubinelli, M. Controlling rough paths / M. Gubinelli // J. Functional Analysis. – 2004. – Vol. 216, № 1. – P. 86–140. https://doi.org/10.1016/j.jfa.2004.01.002
2. Friz, P. A Course on Rough Paths with an Introduction to Regularity Structures / P. Friz, M. Hairer. – Cham, Springer International Publishing Switzerland, 2014. – 263 p. https://doi.org/10.1007/978-3-319-08332-2
3. Nualart, D. Differential equations driven by fractional Brownian motion / D. Nualart, A. Rascanu // Collectanea Mathematica. – 2002. – Vol. 53, № 1. – P. 55–81.
4. Zahle, M. Integration with respect to fractal functions and stochastic calculus. I / Zahle, M. // Probability Theory and Related Fields. – 1998. – Vol. 111, № 3. – P. 333–374. https://doi.org/10.1007/s004400050171
5. Васьковский, М. М. Устойчивость и притяжение решений нелинейных стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / М. М. Васьковский // Дифференц. уравнения. – 2017. – № 2. – C. 160–173.
6. Garrido-Atienza, M. J. Asymptotical stability of differential equations driven by Hölder-continuous paths // M. J. Garrido-Atienza, A. Neuenkirch, B. Schmalfuss // J. Dynamics and Differential Equations. – 2017. – Vol. 30, № 1. – P. 359–377. https://doi.org/10.1007/s10884-017-9574-6
7. Large Deviations and Asymptotic Maethods in Finance / P. Friz Cham [et al.]. – Springer International Publishing Switzerland, 2015. – 590 p. https://doi.org/10.1007/978-3-319-11605-1