Functional integrals method for systems of stochastic differential equations
https://doi.org/10.29235/1561-2430-2018-54-3-279-289
Abstract
Systems of stochastic differential equations, for which the Riemannian manifold generated by a diffusion matrix has zero curvature, are considered in this article. The method for approximate evaluation of characteristics of the solution of the systems of stochastic differential equations is proposed. This method is based on the representation of the probability density function through the functional integral. To compute functional integrals we use the expansion of action with respect to a classical trajectory, for which the action takes an extreme value. The classical trajectory is found as the solution of the multidimensional Euler – Lagrange equation.
About the Authors
E. A. AyryanRussian Federation
Edik A. Ayryan – Ph. D. (Physics and Mathematics), Head of the Sector of the Laboratory of Information Technologies.
6, Joliot-Curie Str., 141980, Dubna.
A. D. Egorov
Belarus
Alexandr D. Egorov – D. Sc. (Physics and Mathematics), Chief Researcher.
11, Surganov Str., 220072, Minsk.
D. S. Kulyabov
Russian Federation
Dmitry S. Kulyabov – D. Sc. (Physics and Mathema- tics), Assistant Professor, Department of Applied Probability and Informatics, RUDN University.
6, Mikluho-Maklaya Str., 117198, Moscow.
V. B. Malyutin
Belarus
Victor B. Malyutin – D. Sc. (Physics and Mathematics), Leading Researcher.
11, Surganov Str., 220072, Minsk.
L. A. Sevastyanov
Russian Federation
Leonid A. Sevastyanov – D. Sc. (Physics and Mathematics), Professor, Department of Applied Probability and In- formatics, RUDN University.
6, Mikluho-Maklaya Str., 117198, Moscow.
References
1. Gardiner C. W. Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences. 2nd ed. Springer-Verlag, 1986, 442 p. https://doi.org/10.1007/978-3-662-02452-2
2. Van Kampen N. G. Stochastic Processes in Physics and Chemistry. 3rd ed. Amsterdam, 2007. 463 p.
3. Gikhman I. I., Skorokhod A. V. Stochastic Differential Eqations. Kiev, Naukova Dumka Publ., 1968. 354 p. (in Russian).
4. Kuznetsov D. F. Numerical Integration of Stochastic Differential Equations. 2. S.-Peterburg, Polytechnic University Publishing House, 2006. 764 p. (in Russian).
5. Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential Equations. Berlin, Springer, 1992. 636 p. https://doi.org/10.1007/978-3-662-12616-5
6. Kloeden P. E., Platen E. and Schurz H. Numerical Solution of Stochastic Differential Equations Through Computer Experiments. Berlin, Springer, 1994. 309 p.
7. Onsager L., Machlup S. Fluctuations and Irreversible Processes. Physical Review, 1953, vol. 91, no. 6, pp. 1505–1512. https://doi.org/10.1103/physrev.91.1505
8. Langouche F., Roekaerts D., Tirapegui E. Functional Integration and Semiclassical Expansions. Dordrecht: D. Reidel Pub. Co., 1982. 315 p. https://doi.org/10.1007/978-94-017-1634-5
9. Wio H. S. Application of Path Integration to Stochastic Process: an Introduction. World Scientific Publishing Company, 2013. 176 p. https://doi.org/10.1142/8695
10. Bennati E., Rosa-Clot M., Taddei S. A path integral approach to derivative security pricing I: formalism and analytical results. International Journal of Theoretical and Applied Finance, 1999, vol. 2, no. 4, pp. 381–407. https://doi.org/10.1142/s0219024999000200
11. Graham R. Path integral formulation of general diffusion processes. Zeitschrift fur Physik B Condensed Matter and Quanta, 1977, vol. 26, no. 3, pp. 281–290. https://doi.org/10.1007/bf01312935
12. Graham R. Lagrangian for diffusion in curved phase space. Physical Review Letters, 1977, vol. 38, no. 2, pp. 51–53. https://doi.org/10.1103/physrevlett.38.51
13. Ayryan E. A., Egorov A. D., Kulyabov D. S., Malyutin V. B., Sevastyanov L. A. Application of functional integrals to stochastic equations. Mathematical Models and Computer Simulations, 2017, vol. 9, no. 3, pp. 339–348. https://doi.org/10.1134/s2070048217030024
14. Glimm J., Jaffe A. Quantum Physics. A Functional Integral Point of View. Berlin, Heidelberg, New York, Springer, 1981. https://doi.org/10.1007/978-1-4684-0121-9
15. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965. 365 p.
16. Krylov V. I., Bobkov V. V., Monastyrnyi P. I. Numerical Methods of Higher Mathematics. Vol. 2. Minsk, Vysheishaya Shkola Publ., 1975. 584 p. (in Russian).
17. Kulyabov D. S. and Demidova A. V. Introduction of self-consistent term in stochastic population model equation. Vestnik RUDN. Seriya Matematika. Informatika. Fizika = RUDN Journal of Mathematics, Information Sciences and Physics, 2012, no. 3, pp. 69–78 (in Russian).
18. Demidova A. V., Gevorkian M. N., Egorov A. D., Kuliabov D. S., Korolkova A. V., and Sevastianov L. A. Influence of stochastization on one-step models, Vestnik RUDN. Seriya Matematika. Informatika. Fizika = RUDN Journal of Mathematics, Information Sciences and Physics, 2014, no. 1, pp. 71–85 (in Russian).