Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Morphological, optical and photoluminescent properties of a thin ZnO film on the Al2O3 substrate

https://doi.org/10.29235/1561-2430-2018-54-3-341-352

Abstract

Thin transparent conductive zinc oxide films are of interest for application in various fields of science and technology, including anti-icing systems for glasses in aircrafts, in coatings that reduce static electric charge on instrument panels, in electrical contacts to liquid crystals, electrochromic and electroluminescent indicators for displays, development of high-efficiency solar cells. Thin zinc oxide films on anodic aluminium oxide substrates are formed on the porous side and on the barrier layer of γ-aluminium oxide under high-frequency pulsed-periodic laser deposition in vacuum. The morphology of the obtained films was studied by atomic-force microscopy and their differences were noted, depending on the side of the substrate. The optical properties of films in the near-IR region, as well as the features of their photoluminescence characteristics were studied experimentally. The substrates Al2O3 –ZnO film as a sensitive layer can be used to design sensors and tandem solar cells.

About the Authors

A. N. Chumakov
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Aleksandr N. Chumakov – Dr. Sc. (Physics and Mathematics), Head of the Laboratory of the Radiation Plasma Dynamics.

68-2, Nezavisimosti Ave., 220072, Minsk.



N. I. Mukhurov
SSPA “Optics, Optoelectronics and Laser Technology”
Belarus

Nikolai I. Mukhurov – Dr. Sc. (Engineering), Professor, Head of the Laboratory of the Micro- and Nanosensorics.

68-1, Nezavisimosti Ave., 220072, Minsk.



S. V. Denisiuk
SSPA “Optics, Optoelectronics and Laser Technology”
Belarus

Sergei V. Denisiuk – Researcher of the Laboratory of the Micro- and Nanosensorics.

68-1, Nezavisimosti Ave., 220072, Minsk.



A. A. Shevchenok
Belarusian State Agrarian Technical University
Belarus

Aleksandr A. Shevchenok – Ph. D. (Engineering), Assistant Professor.

99, Nezavisimosti Ave., 220023, Minsk.



L. V. Baran
Belarusian State University
Belarus

Liudmila V. Baran – Ph. D. (Physics and Mathematics), Sector Head.

4, Nezavisimosti Ave., 220030, Minsk.



T. F. Raichenok
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Tamara F. Raichenok – Ph. D. (Physics and Mathematics), Leading Researcher of the Laboratory of Physics of Infrared Rays.

68-2, Nezavisimosti Ave., 220072, Minsk.



N. A. Bosak
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Nikolai A. Bosak – Ph. D. (Physics and Mathematics), Leading Researcher of the Laboratory of the Radiative Plasma Dynamics.

68-2, Nezavisimosti Ave., 220072, Minsk.



References

1. Yu X., Marks T. J., Facchetti A. Metal oxides for optoelectronic applications. Nature Materials, 2016, vol. 15, no. 4, pp. 383–396. https://doi.org/10.1038/nmat4599

2. Stadler A. Transparent Conducting Oxides – An Up-To-Date Overview. Materials, 2012, vol. 5, no. 12, pp. 661–683. https://doi.org/10.3390/ma5040661

3. Wager J. F., Keszler D. A., Presley R. E. Transparent Electronics. Springer Science + Business Media, LLC., 2008. 217 p. https://doi.org/10.1007/978-0-387-72342-6

4. Poortmans J., Arkhipov V. (eds.) Thin film solar cells: fabrication, characterization, and application. John Wiley and Sons Inc., 2006. 504 p. https://doi.org/10.1002/0470091282

5. Wöll C. The chemistry and physics of zinc oxide surfaces. Progress in Surface Science, 2007, vol. 82, no. 2–3, pp. 55–120. https://doi.org/10.1016/j.progsurf.2006.12.002

6. Janotti A., Van de Walle C. Fundamentals of zinc oxide as a Semiconductor. Reports on Progress in Physics, 2009, vol. 72, no. 12, pp. 126501 (29 p). https://doi.org/10.1088/0034-4885/72/12/126501

7. Özgür Ü., Alivov Ya. I., Liu C., Teke A., Reshchikov M. A., Doğan S., Avrutin V., Cho S.-J., Morkoç H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, vol. 98, no. 4, pp. 041301–041494. https://doi.org/10.1063/1.1992666

8. Ellmer K., Klein A. ZnO and Its Applications. Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells, Springer Series in Materials Science. Berlin: Springer-Verlag, 2008, vol. 104, pp. 1–33. https://doi.org/10.1007/978-3-540-73612-7_1

9. Djurišić A. B., Ng A. M. C., Chen X. Y. Review ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 2010, vol. 34, no. 4, pp. 191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001

10. Nan Qin, Qun Xiang, Hongbin Zhao, Jincang Zhang, Jiaqiang Xu. Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm, 2014, vol. 16, no. 30, pp. 7062–7073. https://doi.org/10.1039/c4ce00637b

11. Caglar M., Ilican S., Caglar Y., Yakuphanoglu F. Electrical conductivity and optical properties of ZnO nanostructured thin film. Applied Surface Science, 2009, vol. 255, no. 8, pp. 4491–4496. https://doi.org/10.1016/j.apsusc.2008.11.055

12. Lashkarev G. V., Karpyna V. A., Ovsiannikova L. I., Kartuzov V. V., Dranchuk M. V., Godlewski M., Pietruszka R., Khomyak V. V., Petrosyan L. I. Physics of high-conductivity transparent materials on the basis of wide-gap zinc oxide. Low Temperature Physics, 2017, vol. 43, no. 4, pp. 515–519. https://doi.org/10.1063/1.4984077

13. Krasteva L. K., Dimitrov D. T., Papazova K. I, Nikolaev N. K., Peshkova T. V., Moshnikov V. A., Gracheva I. E., Karpova S. S., Kaneva N. V. Synthesis and characterization of nanostructured zinc oxide layers for sensors application. Semiconductors, 2013, vol. 47, no. 4, pp. 586–591. https://doi.org/10.1134/s1063782613040155

14. Bobkov A. A., Maximov A. I., Moshnikov V. A., Somov P. A., Terukov E. I. Zinc-oxide-based nanostructured materials for heterostructure solar cells. Semiconductors, 2015, vol. 49, no. 10, pp. 1402–1406. https://doi.org/10.1134/s1063782615100048

15. Lashkova N. A. , Maximov A. I., Ryabko A. A., Bobkov A. A., Moshnikov V. A., Terukov E. I. Synthesis of ZnO-based nanostructures for heterostructure photovoltaic cells / N. А. Lashkova and others. Semiconductors, 2016, vol. 50, no. 9, pp. 1254–260. https://doi.org/10.1134/s106378261609013x

16. Tainoff D., Masenelli B., Boisron O., Guiraud G., Mélinon P. Crystallinity, Stoichiometry, and Luminescence of High Quality ZnO Nanoclusters. The Journal of Physical Chemistry C, 2008, vol. 112, no. 33, pp. 12623–12627. https://doi.org/10.1021/jp8006156

17. Ellmer K. Transparent Conductive Zinc Oxide and Its Derivatives. Ginley D. S., Hosono H., Paine D. C. (eds.) Handbook of transparent conductors. New York: Springer, 2010, pp. 193–263. https://doi.org/10.1007/978-1-4419-1638-9_7

18. Lianguzov N. V. Synthesis of nanostructures based on zinc oxide and their physical properties. Rostov-on-Don, 2014. 105 p. (in Russian).

19. Kashkul I. N. K. Technology and properties of zinc oxide films for thin-film solar modules. Saint Petersburg, 2017. 117 p. (in Russian).

20. Bobkov A. A., Maksimov A. I., Moshnikov V. A., Somov P. A., Terukov E. I. Zinc-oxide-based nanostructured materials for heterostructure solar cells. Semiconductors, 2015, vol. 49, no. 10, pp. 1357–1360. https://doi.org/10.1134/s1063782615100048

21. Krasteva L. K. , Dimitrov D. Tz., Papazova K. I., Nikolaev N. K., Peshkova T. V., Moshnikov V. A., Gracheva I. E., Karpova S. S., Kaneva N. V. Synthesis and characterization of nanostructured zinc oxide layers for sensor applications. Semiconductors, 2013, vol. 47, no. 4, pp. 564–569. https://doi.org/10.1134/s1063782613040155

22. Vorobyeva N. A. Nanocrystalline ZnO (M) (M = Ga, In) for gas sensors and transparent electrodes. Moscow, 2015. 180 p. (in Russian).

23. Benouis C. E., Benhaliliba M., Sanchez Juarez A., Aida M. S., Chami F., Yakuphanoglu F. The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. Journal of Alloys and Compounds, 2010, vol. 490, no. 1–2, pp. 62–67. doi.org/10.1016/j.jallcom.2009.10.098

24. Vorobyeva N. A., Rumyantseva M. N., Forsh P. A., Gaskov A. M. Conductivity of nanocrystalline ZnO (Ga). Semiconductors, 2013, vol. 47, no. 5, pp. 650–654. https://doi.org/10.1134/s1063782613050242

25. Rabotkin S. V. Application of transparent conductive coatings based on zinc oxide by the method of magnetron sputtering. Tomsk, 2009. 146 p. (in Russian).

26. Zima V. N., Kozlov A. G., Tanskaya T. N., Blinov V. I., Lobov I. A. Structure and morphology of zinc oxide films, obtained by reactive magnetron sputtering. Vestnik Omskogo Universiteta = Herald of Omsk University, 2013, no. 2, pp. 75–79 (in Russian).

27. Klochko N. P., Myagchenko Y. O., Melnychuk E. E., Kopach V. R., Klepikova E. S., Lyubov V. N., Khrypunov G. S., Kopach A. V. Prospects for the pulsed electrodeposition of zinc-oxide hierarchical nanostructures. Semiconductors, 2013, vol. 47, no. 8, pp. 1123–1129. https://doi.org/10.1134/s1063782613080101

28. Vakulov D. E., Vakulov Z. E., Zamburg E. G. et al. Production of transparent conducting nanocrystalline zinc oxide films by pulsed laser deposition. Fundamental'nye issledovaniya = Fundamental research, 2012, no. 11 (part 2), pp. 373–376 (in Russian).

29. Semikina Т. V. Diode structures and electrical properties of ZnO films obtained by the atomic layer-by-layer deposition method. Optoelektronika i poluprovodnikovaya tekhnika = Optoelectronics and Semiconductor Technique, 2016, iss. 51, pp. 150–157 (in Russian).

30. Chumakov A. N., Avramenko V. B., Bosak N. A. Plasma formation in high-frequency pulsed-periodic laser action on metals in air at reduced and atmospheric pressure. Journal of Applied Spectroscopy, 2012, vol. 79, no. 2, pp. 261–268. https://doi.org/10.1007/s10812-012-9593-3

31. ChumakovA. N., Petrov S. A., Bosak N. A., Shcherbakova Ye. N. Structure and optical properties of carbon films obtained by multipulse laser deposition. Journal of Applied Spectroscopy, 2012, vol. 79, no. 4, pp. 664–669. https://doi.org/10.1007/s10812-012-9655-6

32. Chumakov A. N., Gulai A. V., Shevchenko A. A. et. al. Optical properties of laser-deposited thin films of zinc oxide. Elektronika-info [Electronics-info], 2016, no. 2, pp. 32–37 (in Russian).

33. Chumakov A. N., Bosak N. A., Panina A. V. Near-surface plasma formation in air with two-pulse laser action at two wavelengths. Journal of Applied Spectroscopy, 2017, vol. 84, no 4, pp. 620–626. https://doi.org/10.1007/s10812-017-0519-y

34. Gasenkova I. V., Mukhurov N. I., Zhvavyi S. P., Kolesnik E. E., Stupak А. P. Photoluminescent properties of nanoporous anodic alumina doped with manganese ions. Journal of Luminescence, 2017, vol. 185, pp. 298–305. https://doi.org/10.1016/j.jlumin.2017.01.030

35. Gasenkova I. V., Mukhurov N. I., Zhvavyi S. P. et al. Optical characteristics of porous alumina modified with chromium oxide. Poristye pronitsaemye materialy: tekhnologii i izdeliya na ikh osnove: materialy 6-go Mezhdunar. simp., 19–20 okt. 2017 g., Minsk, Belarus' [Materials of the 6th International Scientific Symposium "Porous permeable materials: technologies and products based on them, October 19–20, 2017, Minsk, Belarus]. Minsk, 2017, pp. 298–304. (in Russian).

36. Dlugunovich V. A., Zhumar A. Yu., Mukhurov N. I., Gasenkova I. V. Achromatic phase plates with variable phase difference based on nanoporous alumina. Nanostrukturnye materialy-2016: Belarus' – Rossiya – Ukraina (Nano-2016): materialy V Mezhdunar. nauch. konf., 22–25 noyab. 2016 g., Minsk, Belarus' [Materials V International scientific conference “Nanostructural materials-2016: Belarus – Russia – Ukraine (Nano-2016)”, November 22–25, 2016, Minsk, Belarus]. Minsk, 2016, pp. 472–475. (in Russian).

37. Yasin M. V., Mukhurov N. I., Gasenkova I. V., Lynkov L. M. Threshold detectors of ionizing and ultraviolet radiation based on nanostructured substrates of anodic aluminum oxide. Minsk, Bestprint Publ., 2016. 178 p. (in Russian).

38. Gasenkova I. V., Mukhurov N. I., Zhvavyi S. P. Photoluminescence properties of anodic alumina. Merle A. Case, Bradford C. Stout (eds.) Photoluminescence: Applications, Types and Efficacy. Series: Physics Research and Technology Nova Science. Publishers, Inc., 2012, pp.195–225.

39. Gasenkova I. V., Mukhurov N. I., Zhvavyi S. P. Photoluminescence properties of anodic alumina for application in optical sensors using SERS. Optical Sensors 2011; and Photonic Crystal Fibers V: Proc. SPIE, 2011, vol. 8073, pp. 807328 (10 p.) https://doi.org/10.1117/12.886464

40. Mukhurov N. I., Gasenkova I. V., Andruhovich I. M. Ordered Growth of Anodic Aluminum Oxide in Galvanostatic and Galvanostatic-Potentiostatic Mode. Journal of Materials Science and Nanotechnology, 2014, vol. 1, issue 1, pp. 1–6. https://doi.org/10.15744/2348-9812.1.s110


Review

Views: 1195


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)