Классическое решение смешанной задачи для уравнения типа Клейна – Гордона – Фока с характеристическими косыми производными в граничных условиях
https://doi.org/10.29235/1561-2430-2019-55-1-7-21
Анатацыя
Рассматривается смешанная задача для уравнения типа Клейна – Гордона – Фока в полуполосе с первыми косыми производными в граничных условиях. При ее решении с помощью метода характеристик возникают эквивалентные интегральные уравнения Вольтерры второго рода. Для полученных интегральных уравнений доказано существование единственного решения в классе дважды непрерывно дифференцируемых функций при заданной гладкости начальных данных. Также показано, что для гладкости решения исходной задачи необходимо и достаточно выполнения условий согласования заданных функций при их достаточной гладкости. Метод характеристик сводится к разбиению всей области решения на подобласти, в каждой из которых строятся решения подзадач с использованием начальных и граничных условий. Полученные решения затем склеиваются в общих точках, порождая условия склейки, которые и являются условиями согласования. Для случая, когда направления косых производных в граничных условиях совпадают с характеристическими направлениями, доказывается усиление требований на гладкость заданных функций. Данный подход позволяет строить как точные, так и приближенные решения. Точные решения могут быть найдены тогда, когда удается разрешить эквивалентные интегральные уравнения Вольтерры. В противном случае можно найти приближенное решение задачи либо в аналитическом, либо в численном виде. При этом при построении приближенного решения существенными оказываются условия согласования, которые необходимо учитывать при использовании численных методов решения задачи.
Аб аўтарах
В. КорзюкБеларусь
И. Столярчук
Расія
Спіс літаратуры
1. Боголюбов, Н. Н. Квантовые поля / Н. Н. Боголюбов, Д. В. Ширков. – 3-е изд., доп. – М., ФИЗМАТЛИТ, 2005. – 384 с.
2. Иваненко, Д. Д. Классическая теория поля (новые проблемы) / Д. Д. Иваненко, А. А. Соколов. – 2-е изд. – М.; Л.: Гостехтеоретиздат, 1951. – 479 с.
3. Барановская, С. Н. Смешанная задача для уравнения колебания струны с зависящей от времени косой производной в краевом условии / С. Н. Барановская, Н. И. Юрчук // Дифференц. уравнения. – 2009. – Т. 45, № 8. – С. 1188–1191.
4. Новиков, Е. Н. Необходимые и достаточные условия колебаний ограниченной струны при косых производных в граничных условиях / Ф. Е. Ломовцев, Е. Н. Новиков // Дифференц. уравнения. – 2014. – Т. 50, № 1. – С. 126–129.
5. Корзюк, В. И. Классическое решение смешанной задачи для волнового уравнения с интегральным условием / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2016. – Т. 6, № 60. – С. 22–27.
6. Корзюк, В. И. Первая смешанная задача для уравнения Клейна – Гордона – Фока в полуполосе / В. И. Корзюк, И. И. Столярчук // Дифференц. уравнения. – 2014. – Т. 50, № 8. – С. 1105–1117.
7. Корзюк, В. И. Классическое решение смешанной задачи для уравнения Клейна – Гордона – Фока в полуполосе с косыми производными в граничных условиях / В. И. Корзюк, И. И. Столярчук // Весц. Нац. акад. навук Беларуci. Сер. фiз.-мат. навук — 2018. – Т. 54, № 4. – С. 391–403. https://doi.org/10.29235/1561-2430-2018-54-4-391-403
8. Михлин, С. Г. Курс математической физики / С. Г. Михлин. – 2-е изд., стер. – СПб.: Лань, 2002. – 575 с.
9. Корзюк, В. И. Классическое решение смешанной задачи для уравнения Клейна – Гордона – Фока с нелокальными условиями / В. И. Корзюк, И. И. Столярчук // Докл. Нац. акад. наук Беларуси. – 2017. – Т. 61, № 6. – С. 20–27.
10. Корзюк, В. И. Классическое решение смешанной задачи для уравнения Клейна – Гордона – Фока с нелокальными условиями / В. И. Корзюк, И. И. Столярчук // Тр. Ин-та математики. – 2018. – Т. 26, № 1. – С. 56–72.