Partitioning a split graph into induced subgraphs isomorphic to the path of order 3.
https://doi.org/10.29235/1561-2430-2019-55-1-32-49
Abstract
About the Author
O. I. DuginovRussian Federation
Ph. D. (Physics and Mathematics), Assistant Professor of Department of Discrete Mathematics and Algorithmics.
4, Nezavisimosti Ave., 220030. Minsk.
References
1. Emelichev V. A., Mel'nikov O. I., Sarvanov V. I., Tyshkevich R. I. Lectures on Graph Theory. Moscow, Lenand Publ., 2017. 390 p. (in Russian).
2. Dyer M. E., Frieze A. M. On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics, 1985, vol. 10, no. 2, pp. 139–153. https://doi.org/10.1016/0166-218x(85)90008-3
3. Brandstädt A., Le V. B., Spinrad J. P. Graph Classes: A Survey. Philadelphia, SIAM, 1999. 306 p. https://doi.org/10.1137/1.9780898719796
4. Monnot J., Toulouse S. The path partition problem and related problems in bipartite graphs. Operations Research Letters, 2007, vol. 35, no. 5, pp. 677–684. https://doi.org/10.1016/j.orl.2006.12.004
5. Lovàsz L., Plummer M. Matching Theory. AMS Chelsea Publishing, 2009. 543 p. https://doi.org/10.1090/chel/367
6. Bevern van R., Bredereck R., Bulteau L., Chen J., Froese V., Niedermeier R., Woeginger G. J. Partitioning Perfect Graphs into Stars. Journal of Graph Theory, 2016, vol. 85, no. 2, pp. 297–335. https://doi.org/10.1002/jgt.22062