Оптимизация спектральных характеристик разностных схем для нестационарного уравнения Шредингера
https://doi.org/10.29235/1561-2430-2019-55-1-62-68
Аннотация
Исследована спектральная согласованность двухслойной схемы с весами для нестационарного уравнения Шредингера. Показано, что семейство консервативных разностных схем на шеститочечном шаблоне на каждом шаге по времени эквивалентно последовательности двух сопряженных фазовых фильтров первого порядка
с комплекснозначным полюсом. На основе численного анализа получены приближенные аналитические зависимости оптимальных значений параметров схемы с весами от соотношения шагов сетки, при которых достигается минимальная погрешность функции передачи соответствующего цифрового фильтра в заданном спектральном диапазоне. Показано, что среднеквадратичная погрешность функции передачи дискретных моделей с оптимальными параметрами на фиксированном частотном интервале многократно меньше соответствующих характеристик схемы четвертого порядка точности, которая обеспечивает наилучшую спектральную согласованность в лишь бесконечно узком спектральном диапазоне. Полученные результаты могут быть использованы при конструировании эффективных численных алгоритмов численного анализа как линейных, так и нелинейных задач для уравнений шредингеровского типа.
Об авторе
А. Н. ГуревскийБеларусь
Старший преподаватель кафедры веб-технологий и компьютерного моделирования.
пр. Независимости, 4, 220030, г. Минск.
Список литературы
1. Самарский, А. А. Теория разностных схем / А. А. Самарский. – М.: Наука, 1989. – 616 с.
2. Lele, S. K. Compact finite difference schemes with spectral-like resolution / S. K. Lele // J. Comput. Phys. – 1992. – Vol. 103, № 1. – P. 16–42. https://doi.org/10.1016/0021-9991(92)90324-r
3. Волков, В. М. Оптимизация компактных разностных схем спектрального разрешения для нестационарного уравнения Шредингера на основе методов цифровой обработки сигналов / В. М. Волков, А. Н. Гуревский, И. В. Жукова // Вестн. БГУ. – 2015. – № 3. – С. 84–89.
4. Волков, В. М. Спектральная согласованность разностных схем для уравнения теплопроводности / В. М. Волков, А. Н. Гуревский // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2017. – № 3. – С. 7–14.
5. Сергиенко, А. Г. Цифровая обработка сигналов / А. Г. Сергиенко. – СПб.: БХВ-Петербург, 2011. – 768 с.