Движение релятивистского центра масс системы двух тел в среде
https://doi.org/10.29235/1561-2430-2019-55-1-77-82
Аннотация
Выведены в декартовой системе координат в ньютоновской теории тяготения уравнения движения системы из двух тел, движущихся в среде. Система координат барицентрическая, т. е. в ней центр масс двух тел неподвижен. С помощью аппроксимационной процедуры Эйнштейна – Инфельда из полевых уравнений Эйнштейна найдено гравитационное поле, создаваемое системой «два тела – среда», а затем получены уравнения движения тел
в этом поле. Показано, что в постньютоновском приближении общей теории тносительности центр масс двух тел, движущихся в газопылевой разреженной среде постоянной плотности, определенный по аналогии с ньютоновским центром масс, смещается по циклоиде, хотя в ньютоновском приближении он неподвижен, т. е. движение по циклоиде происходит относительно барицентрической ньютоновской неподвижной системы отсчета. Даны численные оценки для величины этого смещения, которое при популярном значении плотности среды ρ = 10–21 г·см–3 может достигать порядка 106 км за один оборот двух тел вокруг их смещающегося центра масс. В случае равенства масс тел их релятивистский центр масс, как и их ньютоновский центр масс, неподвижен. Выдвинута гипотеза о том, что для любых эллиптических орбит двух тел и неоднородного распределения газопылевой среды качественная картина движения релятивистского центра масс двух тел не изменится.