An approach to the theory of gravity with an arbitrary reference level of energy density
https://doi.org/10.29235/1561-2430-2019-55-1-83-96
Abstract
Five-vectors theory of gravity is proposed, which admits an arbitrary choice of the energy density reference level. This theory is formulated as the constraint theory, where the Lagrange multipliers turn out to be restricted to some class of vector fields unlike the General Relativity (GR), where they are arbitrary. A possible cosmological implication of the proposed model is that the residual vacuum fluctuations dominate during the whole evolution of the universe. That resembles
the universe having a nearly linear dependence of a scale factor on cosmic time.
About the Authors
S. L. CherkasBelarus
Ph. D. (Physics and Mathematics), Senior Researcher.
11, Bobruiskaya Str., 220050, Minsk.
V. L. Kalashnikov
Austria
Ph. D. (Physics and Mathematics), Senior Researcher.
27/387, Gusshausstrasse, A-1040, Vienna.
References
1. Capozziello S., Faraoni V. Beyond Einstein Gravity. Dordrecht, Springer, 2011. 467 p. https://doi.org/10.1007/978-94-007-0165-6
2. Vladimirov Yu. S. Geomertofizika. Moscow, Binom Publ., 2012. 536 p. (in Russian).
3. DeWitt B. S. Quantum Theory of Gravity. I. The Canonical Theory. Physical Review, 1967, vol. 160, no. 5. pp.1113–1148. https://doi.org/10.1103/PhysRev.160.1113
4. Wheeler J. A., Superspace and nature of quantum geometrodynamics. DeWitt C., Wheeler J. A. (eds.). Battelle Rencontres, New York, Benjamin, 1968, pp. 242–308.
5. Ashtekar A., Stachel J. (eds.). Conceptual Problems of Quantum Gravity. Boston, Birkhäuser, 1991. 604 p.
6. Shestakova T. P., Simeone C. The problem of time and gauge invariance in the quantization of cosmological models. I. Canonical quantization methods. Gravitation and Cosmology, 2004, vol. 10, pp. 161–176.
7. Kiefer C. Quantum cosmology: expectations and results. Annalen der Physik, 2006, vol. 15, no. 4–5, pp. 316–325. https://doi.org/10.1002/andp.200510190
8. Mukhi S. String theory: a perspective over the last 25 years. Classical and Quantum Gravity, 2011, vol. 28, no. 15, p. 153001. https://doi.org/10.1088/0264-9381/28/15/153001
9. Ashtekar A., Gupt B. Generalized effective description of loop quantum cosmology. Physical Review D, 2015, vol. 92, no. 8–15, p. 084060. https://doi.org/10.1103/PhysRevD.92.084060
10. Jizba P., Kleinert H., Scardigli F. Inflationary cosmology from quantum Conformal Gravity. The European Physical Journal C, 2015, vol. 75, no. 6, p. 245. https://doi.org/10.1140/epjc/s10052-015-3441-6
11. Milne E. A., Relativity, Gravitation and World-Structure. Oxford, The Clarendon Press, 1935. 385 p.
12. Horava P. Quantum gravity at a Lifshitz point. Physical Review D, 2009, vol. 79, no. 8–15, p. 084008. https://doi.org/10.1103/PhysRevD.79.084008
13. Gomes H., Koslowski T. The link between general relativity and shape dynamics. Classical and Quantum Gravity, 2012, vol. 29, no. 7, p. 075009. https://doi.org/10.1088/0264-9381/29/7/075009
14. Ferreira P. G., Starkman G. D. Einstein's Theory of Gravity and the Problem of Missing Mass. Science. 2009, vol. 326, no. 5954, p. 812. https://doi.org/10.1126/science.1172245
15. Smolin L. Quantization of unimodular gravity and the cosmological constant problems. Physical Review D, 2009, vol. 80, no. 8–15, p. 084003. https://doi.org/10.1103/PhysRevD.80.084003
16. Milne E. A., Kinematic Relativity. Oxford the Clarendon Press, 1948. 247 p.
17. Landau L. D., Lifshitz E. M. The Classical Theory of Fields. Oxford, Butterworth-Heinemann, 2000. 428 p.
18. Arnowitt R., Deser S., Misner C. W. The Dynamics of General Relativity. Witten L. (ed.). Gravitation: an introduction to current research. New York, Wiley, 1962, chap. 7, p. 227.
19. Gitman D. M., Tyutin I. V. Quantization of Fields with Constraints. Berlin, Springer, 1990. 294 p.
20. Henneaux M., Teitelboim C. Quantization of Gauge Systems. Princeton, Princeton Univ. Pr., 1992. 514 p.
21. Cherkas S. L., Kalashnikov V. L. Quantization of the inhomogeneous Bianchi I model: quasi-Heisenberg picture. Nonlinear Phenomena in Complex Systems, 2015, vol. 18, pp. 1–14.
22. Yoneda G., Shinkai H. Constraint propagation in the family of ADM systems. Physical Review D, 2001, vol. 63, no. 12–15, p. 124019. https://doi.org/10.1103/PhysRevD.63.124019
23. Papapetrou A. Equations of motion in General Relativity. Proceedings of the Physical Society. Section A, vol. 64, no. 1, pp. 57–75. https://doi.org/10.1088/0370-1298/64/1/310
24. Infeld L. Equations of Motion in General Relativity Theory and the Action Principle. Reviews of Modern Physics, vol. 29, no. 3 pp. 398–411. https://doi.org/10.1103/revmodphys.29.398
25. Fock V. The Theory of Space, Time and Gravity. Oxford, Pergamon Press, 1966. 427 p. https://doi.org/10.1016/C2013-0-05319-4
26. Einstein A., Infeld L. On the motion of particles in general relativity theory. Canadian Journal of Mathematics, vol. 1, no. 3, pp. 209–241. https://doi.org/10.4153/cjm-1949-020-8
27. Katanaev M. O. Point massive particle in General Relativity. General Relativity and Gravitation, vol. 45, no. 10, pp. 1861–1875. https://doi.org/10.1007/s10714-013-1564-3
28. Commins E. D., Bucksbaum P. H. Weak Interactions of Leptons and Quarks. Cambridge, Cambridge Univ. Press, 1983. 473 p.
29. Arbuzov A. B., Barbashov B. M., Nazmitdinov R. G., Pervushin V. N., Borowiec A., Pichugin K. N., Zakharov A. F. Conformal Hamiltonian Dynamics of General Relativity. Physics Letters B, 2010, vol. 691, no. 5, pp. 230–230. https://doi.org/10.1016/j.physletb.2010.06.042
30. Alberghi G. L., Kamenshchik A. Yu., Tronconi A., Vacca G. P., Venturi G., Vacuum energy, cosmological constant and Standard Model physics. JETP Letters, 2008, vol. 88, no. 11, pp. 705–710. https://doi.org/10.1134/s002136400823001x
31. Copeland E. J. Dark energy in light of the discovery of the Higgs. Annalen der Physik, 2016, vol. 528, no. 1–2, pp. 62–67. https://doi.org/10.1002/andp.201500163
32. Dvali G., Gomez C. Quantum exclusion of positive cosmological constant? Annalen der Physik, vol. 528, no. 1–2, pp. 68–73. https://doi.org/10.1002/andp.201500216
33. Cherkas S. L., Kalashnikov V. L. Determination of the UV cut-off from the observed value of the Universe acceleration. Journal of Cosmology and Astroparticle Physics, 2007, vol. 1, p. 028. https://doi.org/10.1088/1475-7516/2007/01/028
34. Cherkas, S. L., Kalashnikov V. L. Universe driven by the vacuum of scalar field: VFD model. Baryshev, Yu. V., Taganov, I. N., Teerikorpi P. (eds.). Practical cosmology: proceedings of the International conference “Problems of practical cosmology”, held at Russian geographical society, 23-27 June 2008, vol. 2. Saint-Petersburg, Russ. geogr. soc., 2008, pp. 135–140.
35. Birrell N. D., Davis P. C. W. Quantum Fields in Curved Space. Cambridge, Cambridge Univ. Press, 1982. 352 p. https://doi.org/10.1017/CBO9780511622632
36. Gong Y., Wang A. Observational constraints on the acceleration of the Universe. Physical Review D, 2006, vol. 73, no. 8–15, p. 083506. https://doi.org/10.1103/PhysRevD.73.083506
37. Singh P., Lohiya D. Constraints on Lepton Asymmetry from Nucleosynthesis in a Linearly Coasting Cosmology. Journal of Cosmology and Astroparticle Physics, 2015, vol. 05, p. 061. https://doi.org/10.1088/1475-7516/2015/05/061
38. Dev A., Safonova M., Jain D., Lohiya D. Cosmological Tests for a Linear Coasting Cosmology. Physics Letters B, vol. 548, no. 1–2, pp. 12–18. https://doi.org/10.1016/S0370-2693(02)02814-9
39. Benoit-Lévy A., Chardin G. The Dirac-Milne cosmology. International Journal of Modern Physics: Conference Series, 2014, vol. 30, p. 1460272. https://doi.org/10.1142/S2010194514602725
40. Melia F. On recent claims concerning the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 2015, vol. 446, no. 2, pp.1191–1194. https://doi.org/10.1093/mnras/stu2181
41. Shafer D. L. Robust model comparison disfavors power law cosmology. Physical Review D, 2015, vol. 91, no. 10, p. 103516. https://doi.org/10.1103/physrevd.91.103516
42. Melia F. The Linear Growth of Structure in the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 2017,
43. vol. 464, no 2, pp. 1966–1976. https://doi.org/10.1093/mnras/stw2493
44. Bengochea G. R., Leon G. Puzzling initial conditions in the Rh = ct model. The European Physical Journal C, 2016, vol. 76, no. 11, p. 626. https://doi.org/10.1140/epjc/s10052-016-4485-y
45. Tutusaus I., Lamine B., Blanchard A., Dupays A., Zolnierowski Y, Cohen-Tanugi J., Ealet A., Escoffer S., Le Fèvre O., Ilić S., Pisani A., Plaszczynski S., Sakr Z., Salvatelli V., Schücker T., Tilquin A., Virey J.-M. Power law cosmology model comparison with CMB scale information. Physical Review D, 2016, vol. 94, no. 10, p. 103511. https://doi.org/10.1103/PhysRevD.94.103511