Electromagnetic calorimeter of the trigger system for the COMET experiment.
https://doi.org/10.29235/1561-2430-2019-55-1-97-109
Abstract
In this paper, on the basis of the Monte-Carlo simulation results a signal processing algorithm for determination of the energy deposited in real time by incident particles has been developed and implemented in the created electronics prototype of the trigger system for an electromagnetic calorimeter of the COMET experiment. The energy thresholds for trigger cells are determined which make it possible to select signal events – an electron with a momentum of 105 MeV/c, and significantly reduce a rate of background events. The electronics prototype of the trigger system has been verified by testbench measurements and electron beam experiments. The obtained results satisfy the key requirement of the calorimeter – the energy resolution in real time is better than 5 % for the signal electron energy.
About the Authors
D. V. ShoukavyRussian Federation
Ph. D. (Physics and Mathe matics), Leading Researcher.
68-1, Nezavisimosti Ave., 220072.
D. N. Grigoriev
Russian Federation
Ph. D. (Physics and Mathematics), Head of the Laboratory; Head of the Laboratory; Assistant Professor.
2, Pirogov Str., 630090, Novosibirsk; 11, Akademician Lavrentiev Ave., 630090, Novosibirsk; 20, K. Marks Ave., 630073, Novosibirsk.
L. B. Epshteyn
Russian Federation
Researcher; Senior Lecturer.
2, Pirogov Str., 630090, Novosibirsk; 11, Akademician Lavrentiev Ave., 630090, Novosibirsk; 20, K. Marks Ave., 630073, Novosibirsk.
Yu. V. Yudin
Russian Federation
Ph. D. (Engineering), Senior Researcher; Senior Researcher.
2, Pirogov Str., 630090, Novosibirsk; 20, K. Marks Ave., 630073, Novosibirsk.
References
1. Emel'yanov V. M. Standard Model and Its Extensions. Moscow, Fizmatlit Publ., 2007. 584 p. (in Russian).
2. Aad G., Abajyan T., Abbott B., Abdallah J., Abdel Khalek S., Abdelalim A. A., Abdinov O., Aben R., Abi B., Abolins M., AbouZeid O.S., Abramowicz H. [et al. ATLAS Collaboration]. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letter B, 2012, vol. 716, no. 1, pp. 1–29. https://doi.org/10.1016/j.physletb.2012.08.020
3. Chatrchyan S., Khachatryan V., Sirunyan A., Tumasyan A., Adam W., Aguilo E., Bergauer T., Dragicevic M., Erö J., Fabjan C. [et al. CMS Collaboration]. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letter B, 2012, vol. 716, no. 1, pp. 30–61. https://doi.org/10.1016/j.physletb.2012.08.021
4. Fukuda Y., Hayakawa T., Ichihara E., Inoue K, Ishihara K., Ishino H., Itow Y., Kajita Т., Kameda J., Kasuga S. [et al. Super-Kamiokande Collaboration]. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 1998, vol. 81, no. 8, pp.1562–1567. https://doi.org/10.1103/PhysRevLett.81.1562
5. Adam J., Bai X., Baldini A. M., Baracchini E., Bemporadab C., Bocaab G., Cattaneo P. W., Cavoto G., Ceiab F., Cerri C. [et al. MEG Collaboration]. New Limit on the Lepton-Flavor-Violating Decay μ+→e+γ. Physical Review Letters, 2011, vol. 107, no. 17, pp. 171801 (5 p.). https://doi.org/10.1103/PhysRevLett.107.171801
6. Bertl W., Egli S., Eichler R., Engfer R., Felawka L., Grab Ch., Hermes E. A., Kraus N., Lordong N., Martino J., Pruys H. S., Schaaf A. v. d., Walter H. K. Search for the decay μ+ → e+e+e−. Nuclear Physics B, 1985, vol. 260, no. 1, pp. 1–31. https://doi.org/10.1016/0550-3213(85)90308-6
7. C. Dohmen, K.-D. Groth, B. Heer, W. Honecker, G. Otter, B. Steinrücken, P. Wintz, V. Djordjadze, J. Hofmann, T. Kozlowski, S. Playfer, W. Bertl, J. Egger, W. Herold, B. Krause, H.K. Walter, R. Engfer, Ch. Findeisen, [et al. SINDRUM II Collaboration]. Test of lepton-flavour conservation in μ → e conversion on titanium. Physics Letter B, 1993, vol 317, no. 4, pp. 631–636. https://doi.org/10.1016/0370-2693(93)91383-x
8. Bertl W., Engfer R., Hermes E. A., Kurz G., Kozlowski T., Kuth J., Otter G., Rosenbaum F., Ryskulov N. M, van der Schaaf A., Wintz P., Zychor I. A search for μ-e conversion in muonic gold. European Physical Journal C, 2006, vol. 47, no. 2, pp. 337–346. https://doi.org/10.1140/epjc/s2006-02582-x
9. Kuno Y. A search for muon-to-electron conversion at J-PARC: the COMET experiment. Progress of Theoretical and Experimental Physics, 2013, vol. 2013, no. 2, 022C011. https://doi.org/10.1093/ptep/pts089
10. Czarnecki A., Tormo X. G., Marciano W. J. Muon decay in orbit: Spectrum of high-energy electrons. Physical Review D, 2011, vol. 84, no. 1, pp. 013006. https://doi.org/10.1103/physrevd.84.013006
11. Abramishvili R., Adamov G., Akhmetshin R., Anishchik V., Aoki М., Arimoto Y., Bagaturia I., Ban Y., Bondar A., Calas Y., Canfer S., Cardenas Y., Chen S. [et al. COMET Collaboration]. COMET Phase-I Technical Design Report. 2016. Available at: http://comet.kek.jp/Documents_files/PAC-TDR-2016/COMET-TDR-2016_v2.pdf
12. Epshteyn L. B., Akhmetshin R. R., Grigogiev D. N., Kazanin V. F., Melnik A. S., Shoukavy Dz. V., Yudin Yu. V. The level-1 trigger system for the electromagnetic calorimeter of the COMET experiment. Journal of Instrumentation, 2017, vol. 12, pp. C01064 (8 p.). https://doi.org/10.1088/1748-0221/12/01/c01064