Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Magnetocaloric properties of the single crystal Mn0.99Fe0.01As

https://doi.org/10.29235/1561-2430-2019-55-1-118-124

Abstract

The Stockbargard – Bridgman method yielded single crystals Mn0.99Fe0.01As. The effect of an external magnetic field with an intensity of up to 10 T on phase transitions in the single crystal Mn0.99Fe0.01As is studied. It is established that the magnetostructural phase transition in Mn0.99Fe0.01As is accompanied by a change in the entropy ΔSm, which is due to the transformation of the crystal structure. At temperatures above the temperature of the magnetostructural transition Tu = 290 K, the existence of an unstable magnetic structure is obtained. The magnetocaloric characteristics of the material under study are determined by an indirect calculation method based on the Maxwell thermodynamic relations and the Clapeyron – Clausius equation.

About the Authors

G. A. Govor
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus.
Russian Federation

 Dr. Sc. (Physics and Mathematics), Professor, Leading Researcher.

19, P. Brovka Str., 220072, Minsk.



A. O. Larin
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus.
Russian Federation

 Junior Researcher.

19, P. Brovka Str., 220072, Minsk.



V. I. Mitsiuk
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus.
Russian Federation

Ph. D. (Physics and Mathematics), Senior Researcher.

19, P. Brovka Str., 220072, Minsk.



G. S. Rimskiy
Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus.
Russian Federation

 Postgraduate Student, Junior Researcher.

19, P. Brovka Str., 220072, Minsk.



T. M. Tkachenkа
Belarusian State Agrarian Technical University.
Russian Federation

Ph. D. (Physics and Mathematics), Assistant Professor, Assistant Professor of the Depart ment of Practical Training of Students.

99, Nesavisimosti Ave., 220023, Minsk.



References

1. Franco V., Blazquez J. S., Ipus J. J., Law J. Y., Moreno-Ramirez L. M., Conde A. Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 2018, vol. 93, pp. 112–232. https://doi.org/10.1016/j.pmatsci.2017.10.005

2. Gschneidner K. A. The Magnetocaloric Effect, Magnetic Refrigeration and Ductile Intermetallic Compounds. Acta Materialia, 2009, vol. 57, no. 1, pp.18–28. https://doi.org/10.1016/j.actamat.2008.08.048

3. Gschneidner K. A., Pecharsky V. K., Tsokol A. V. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, vol. 68, no. 6, pp.1479–1539. https://doi.org/10.1088/0034-4885/68/6/R04

4. Melikhov Y., Hadimani R.L., Raghunathan A. Gd5(SixGe1–x)4 system – updated phase diagram. Journal of Magnetism and Magnetic Materials, 2015, vol. 395, pp. 143–146. https://doi.org/10.1016/j.jmmm.2015.07.062

5. Zou J. D. Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound. Chinese Physics B, 2012, vol. 21, no. 5, p. 037503. https://doi.org/10.1088/1674-1056/21/3/037503

6. Nikitin S.A., Myalikguliev G., Tishin A. M., Annaorazov M. P., Asatryan K. A., Tyurin A. L. The magnetocaloric effect in Fe49Rh51 compound. Physics Letters A, 1990, vol. 148, no. 6–7, pp. 363–366. https://doi.org/10.1016/0375-9601(90)90819-A

7. Chirkova A., Skokov K. P., Schultz L., Baranov N. V., Gutfleisch O., Woodcock T. G. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Materialia, 2016, vol. 106, pp. 15–21. https://doi.org/10.1016/j.actamat.2015.11.054

8. Stern-Taulats E., Planes A., Lloveras P., Barrio M., Tamarit J.-L., Pramanick S., Majumdar S., Frontera C., Manosa L. Barocaloric and magnetocaloric effects in Fe49Rh51. Physical Review B, 2014, vol. 89, no. 21, p. 214105. https://doi.org/10.1103/PhysRevB.89.214105

9. Budzynski M., Val’kov V. I., Golovchan A. V., Mitsiuk V. I., Surowiec Z., Tkachenko T. M. Structure and properties of MnNi1–xFexGe (0,10 ≤ x ≤ 0,25). Physics of the Solid State, 2015, vol. 57, no. 12. pp. 2410–2416. https://doi.org/10.1134/S1063783415120094

10. Sivachenko A.P., Mityuk V.I., Kamenev V.I., Golovchan A.V., Val’kov V.I., Gribanov I.F. Magnetostrictive and magnetocaloric effects in Mn0,89Cr0,11NiGe. Low Temperature Physics, 2013. vol. 39, no. 12. pp. 1051–1054. https://doi.org/10.1063/1.4843196

11. Pankratov N. Y., Mitsiuk V. I., Ryzhkovskii V. M., Nikitin S. A. Direct measurement of the magnetocaloric effect in MnZnSb intermetalic compound. Journal of Magnetism and Magnetic Materials, 2019, vol. 470. pp. 46–49. https://doi.org/10.1016/j.jmmm.2018.06.035

12. Mitsiuk V.I., Govor G.A., Budzynski M. Phase transitions and magnetocaloric effect in MnAs, MnAs0.99P0.01, and MnAs0.98P0.02 single crystals. Inorganic Materials, 2013, vol. 49, pp.14–17. https://doi.org/1010.1134/S002016851301007X

13. Val’kov V. I., Gribanov I. F., Todris B. M., Golovchan A. V., Mitsiuk V. I. Features of the formation of magnetocaloric phenomena in the systems Mn1–tTitAs and Mn1–xCrxNiGe. Physics of the Solid State, 2018, vol. 60, no. 6, pp. 1113–1121. https://doi.org/10.1134/S1063783418060343

14. Mitsiuk V. I., Pankratov N. Yu., Govor G. A., Nikitin S. A., Smarzhevskaya A. I. Magnetostructural phase transitions in manganese arsenide single crystals. Physics of the Solid State, 2012, vol. 54, no 10, pp. 1865–1872. https://doi.org/10.1134/S106378341806034310.1134/S1063783412100241

15. Pankratov N. Yu., Mitsiuk V. I., Krokhotin A. I., Smarzhevskaya A. I., Govor G. A., Nikitin S. A., Ryzhkovskii V. M. Giant magnetocaloric effect in the region of magnetic phase transition in Mn(As,Sb) intermetallic compounds. Solid State Phenomena, 2012, vol. 190, pp. 343–345. https://doi.org/10.4028/www.scientific.net/SSP.190.343


Review

Views: 1052


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)