1. Franco V., Blazquez J. S., Ipus J. J., Law J. Y., Moreno-Ramirez L. M., Conde A. Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 2018, vol. 93, pp. 112-232. https://doi.org/10.1016/j.pmatsci.2017.10.005
2. Gschneidner K. A. The Magnetocaloric Effect, Magnetic Refrigeration and Ductile Intermetallic Compounds. Acta Materialia, 2009, vol. 57, no. 1, pp.18-28. https://doi.org/10.1016/j.actamat.2008.08.048
3. Gschneidner K. A., Pecharsky V. K., Tsokol A. V. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, vol. 68, no. 6, pp.1479-1539. https://doi.org/10.1088/0034-4885/68/6/R04
4. Melikhov Y., Hadimani R.L., Raghunathan A. Gd5(SixGe1-x)4 system - updated phase diagram. Journal of Magnetism and Magnetic Materials, 2015, vol. 395, pp. 143-146. https://doi.org/10.1016/j.jmmm.2015.07.062
5. Zou J. D. Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound. Chinese Physics B, 2012, vol. 21, no. 5, p. 037503. https://doi.org/10.1088/1674-1056/21/3/037503
6. Nikitin S.A., Myalikguliev G., Tishin A. M., Annaorazov M. P., Asatryan K. A., Tyurin A. L. The magnetocaloric effect in Fe49Rh51 compound. Physics Letters A, 1990, vol. 148, no. 6-7, pp. 363-366. https://doi.org/10.1016/0375-9601(90)90819-A
7. Chirkova A., Skokov K. P., Schultz L., Baranov N. V., Gutfleisch O., Woodcock T. G. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Materialia, 2016, vol. 106, pp. 15-21. https://doi.org/10.1016/j.actamat.2015.11.054
8. Stern-Taulats E., Planes A., Lloveras P., Barrio M., Tamarit J.-L., Pramanick S., Majumdar S., Frontera C., Manosa L. Barocaloric and magnetocaloric effects in Fe49Rh51. Physical Review B, 2014, vol. 89, no. 21, p. 214105. https://doi.org/10.1103/PhysRevB.89.214105
9. Budzynski M., Val’kov V. I., Golovchan A. V., Mitsiuk V. I., Surowiec Z., Tkachenko T. M. Structure and properties of MnNi1-xFexGe (0,10 ≤ x ≤ 0,25). Physics of the Solid State, 2015, vol. 57, no. 12. pp. 2410-2416. https://doi.org/10.1134/S1063783415120094
10. Sivachenko A.P., Mityuk V.I., Kamenev V.I., Golovchan A.V., Val’kov V.I., Gribanov I.F. Magnetostrictive and magnetocaloric effects in Mn0,89Cr0,11NiGe. Low Temperature Physics, 2013. vol. 39, no. 12. pp. 1051-1054. https://doi.org/10.1063/1.4843196
11. Pankratov N. Y., Mitsiuk V. I., Ryzhkovskii V. M., Nikitin S. A. Direct measurement of the magnetocaloric effect in MnZnSb intermetalic compound. Journal of Magnetism and Magnetic Materials, 2019, vol. 470. pp. 46-49. https://doi.org/10.1016/j.jmmm.2018.06.035
12. Mitsiuk V.I., Govor G.A., Budzynski M. Phase transitions and magnetocaloric effect in MnAs, MnAs0.99P0.01, and MnAs0.98P0.02 single crystals. Inorganic Materials, 2013, vol. 49, pp.14-17. https://doi.org/1010.1134/S002016851301007X
13. Val’kov V. I., Gribanov I. F., Todris B. M., Golovchan A. V., Mitsiuk V. I. Features of the formation of magnetocaloric phenomena in the systems Mn1-tTitAs and Mn1-xCrxNiGe. Physics of the Solid State, 2018, vol. 60, no. 6, pp. 1113-1121. https://doi.org/10.1134/S1063783418060343
14. Mitsiuk V. I., Pankratov N. Yu., Govor G. A., Nikitin S. A., Smarzhevskaya A. I. Magnetostructural phase transitions in manganese arsenide single crystals. Physics of the Solid State, 2012, vol. 54, no 10, pp. 1865-1872. https://doi.org/10.1134/S106378341806034310.1134/S1063783412100241
15. Pankratov N. Yu., Mitsiuk V. I., Krokhotin A. I., Smarzhevskaya A. I., Govor G. A., Nikitin S. A., Ryzhkovskii V. M. Giant magnetocaloric effect in the region of magnetic phase transition in Mn(As,Sb) intermetallic compounds. Solid State Phenomena, 2012, vol. 190, pp. 343-345. https://doi.org/10.4028/www.scientific.net/SSP.190.343