MODEL OF NONLINEAR ELASTIC-PLASTIC MATERIAL
Abstract
Within the concept of yield surfaces based on the principle of preserving the potential nature of elastic deformation the model of material is proposed. The active elastoplasticity process is presented by the alternation of plastic and elastic states. Deviatory cross sections of the yield surface are defined. Defining relationships are formulated. The model examples for orthotropic materialare considered.
About the Author
O. L. Shved
The United Institute of Informatics Problems of the NAS of Belarus, Minsk
Belarus
References
1. Levitas V. I. Bol'shie uprugoplasticheskie deformatsii materialov pri vysokom davlenii. Kiev, 1987.
2. Bell Dzh. F. Eksperimental'nye osnovy mekhaniki deformiruemykh tverdykh tel. M., 1984. Ch. 2: Konechnye deformatsii.
3. Zhilin P. A. Osnovnye uravneniya neuprugikh sred // Aktual'nye problemy mekhaniki: tr. XXVIII letnei shkoly. SPb., 2001. S. 14-58.
4. Lur'e A. I. Nelineinaya teoriya uprugosti. M., 1980.
5. Murnaghan F. D. Finite deformation of an elastic solid. New York, 1951.
6. Shved O. L. // Informatika. 2011. № 3 (31). S. 57-67.
7. Shved O. L. // Vesshch AN Belarusg Ser. fiz.-mat. navuk. 2009. № 1. S. 52-58.
8. Shved O. L. // Vesshch NAN Belarusg Ser. fiz.-mat. navuk. 2007. № 1. S. 83-87.
9. Shved O. L. // Vesshch NAN Belarusg Ser. fiz.-tekhn. navuk. 2001. № 1. S. 120-125.
10. Shved O. L. // Vesshch NAN Belarusi Ser. fiz.-mat. navuk. 2008. № 2. S. 66-72.
11. Shved O. L., Abramov A. A. // Informatika. 2007. № 4 (16). S. 133-136.
12. Shved O. L., Abramov A. A. // Informatika. 2009. № 1 (21). S. 17-24.
Views:
746