1. Bomze I. M., Dür M., Klerk E. de, Roos C., Quist A. J., Terlaky T. On copositive programming and standard quadratic optimization problems. Journal of Global Optimization, 2000, vol. 18, no. 4, pp. 301-320. https://doi.org/10.1023/a:1026583532263
2. Bomze I. M. Copositive optimization - Recent developments and applications. European Journal of Operational Research, 2012, vol. 216, no. 3, pp. 509-520. https://doi.org/10.1016/j.ejor.2011.04.026
3. Dür M., Glineur F., Jarlebring E., Michielis W. Copositive Programming - a Survey. Recent advances in Optimization and its applications in Engineering. Berlin-Heidelberg, Springer-Verlag, 2010, pp. 3-20. https://doi.org/10.1007/978-3-642-12598-0_1
4. Motakuri V., Ramana M. V., Tunçel L., Wolkowicz H. Strong duality for Semidefinite Programming. SIAM Journal on Optimization, 1997, vol. 7, no 3, pp. 641-662. https://doi.org/10.1137/s1052623495288350
5. Zhang Q., Chen G., and Zhang T. Duality formulations in Semidefinite Programming. Journal of Industrial and Management Optimization, 2010, vol. 6, no. 4, pp. 881-893. https://doi.org/10.3934/jimo.2010.6.881
6. Kostyukova O. I., Tchemisova T. V. Optimality conditions for linear copositive programming problems with isolated immobile indices. Optimization, 2018, pp. 1-20. https://doi.org/10.1080/02331934.2018.1539482
7. Bonnans J. F., Shapiro A. Perturbation Analysis of Optimization Problems. New-York, Springer-Verlag, 2000. 601 p. https://doi.org/10.1007/978-1-4612-1394-9
8. Kostyukova O. I., Tchemisova T. V. Optimality Conditions for Convex Semi-Infinite Programming Problems with Finitely Representable Compact Index Sets. Journal of Optimization Theory and Applications, 2017, vol. 175, no. 1, pp. 76- 103. https://doi.org/10.1007/s10957-017-1150-z
9. Kostyukova O. I., Tchemisova T. V. Convex SIP problems with finitely representable compact index sets: immobile indices and the properties of the auxiliary NLP problem. Set-Valued and Variational Analysis, 2015, vol. 23, no. 3, pp. 519- 546. https://doi.org/10.1007/s11228-015-0320-0
10. Ahmed F., Dür M., Still G. Copositive Programming via Semi-Infinite Optimization. Journal of Optimization Theory and Applications, 2013, vol. 159, no. 2, pp. 322-340. https://doi.org/10.1007/s10957-013-0344-2
11. Kostyukova O. I., Tchemisova T. V. Implicit Optimality Criterion for Convex SIP problem with Box Constrained Index Set. TOP, 2012, vol. 20, no. 2, pp. 475-502. https://doi.org/10.1007/s11750-011-0189-5
12. Eaves B. C. On quadratic programming. Management Science, 1971, vol. 17, no. 11, pp. 698-711. https://doi.org/10.1287/mnsc.17.11.698
13. Levin V. L. Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions. Mathematics of the USSR-Sbornik, 1969, vol. 8, no. 2, pp. 235-247.